Midterm Exam

(April 26, 2021, 1 hour 15 minutes)

Econometrics (Spring 2021)
Professor: Wonmun Shin

Part I

True or False

(Total 30 points) Read each statement below carefully. Write a T if you think the statement is True. Write an \mathbf{F} if you think the statement is false. Do not forget to state a reason precisely if you answer F. (Grading guide: If your answer (with a reason in case F) is correct, you will get 5 points. If your answer is partially correct (i.e. F without a reason, F with an incorrect reason, etc.), you will get partial points.)

1. In order to prove Gauss-Markov Theorem, normality of regression error should be assumed.
2. The higher is the value of σ^{2} (variance of regression error e_{i}), the larger is the variance of OLS estimator $\hat{\beta}_{2}$ in the simple regression.
3. Even though the regression errors are not normally distributed, OLS estimators for intercept and slope coefficients are still unbiased.
4. The p-value and the size of a test in the hypothesis testing problems are the same.
5. The more observation you have, you will get more accurate estimates. Therefore, R^{2} will always be higher if you have more observations.
6. Since $E\left(\hat{\beta}_{2}\right)=\beta_{2}$ in the simple regression, the OLS estimator $\hat{\beta}_{2}$ is consistent when sample size gets large.

Part II

Short Questions

1. (10 points) Consider a two-variable simple regression, i.e. $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}$. Student A thinks that a slope parameter β_{2} is more important and an intercept is not necessary, so she estimates $Y_{i}=\beta_{2}^{A} X_{i}+e_{i}$ without an intercept though the true model is $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}$. In case, her OLS estimator $\hat{\beta}_{2}^{A}$ is an unbiased estimator of the true parameter β_{2} ? (Yes or No without any explanation will be 0 points.)
2. (10 points) Suppose Student B runs the following regression:

$$
y_{i}=\alpha_{1}+\alpha_{2} x_{i}+u_{i}
$$

where, as usual, y_{i} and x_{i} are deviations from their respective mean values, i.e. $y_{i}=\left(Y_{i}-\bar{Y}\right), x_{i}=\left(X_{i}-\bar{X}\right)$. What will be the OLS estimators $\hat{\alpha}_{1}$ and $\hat{\alpha}_{2}$ in the Student B's regression? Are they different from the OLS estimators in the regression $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}$?
3. (10 points) Student C surveyed 50 classmates to examine the relationship between exam scores of Professor Shin's Econometrics (Y) and studying hours (X). After the survey, he obtained the following results:

$$
\begin{gathered}
\sum X_{i}=450, \quad \sum Y_{i}=2,400 \\
\sum\left(X_{i}-\bar{X}\right)^{2}=800 \quad \sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=3,200
\end{gathered}
$$

Suppose that Student C wants to obtain the OLS estimators for a simple regression model, $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}$. Using the above results, calculate $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$.

Part III

Long Questions

1. (Total 20 points) Consider the following regression models:

Model 1: $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}$
Model 2: $Y_{i}^{*}=\beta_{1}^{*}+\beta_{2}^{*} X_{i}^{*}+e_{i}^{*}$
where $Y_{i}^{*}=2 Y_{i}$ and $X_{i}^{*}=\frac{1}{2} X_{i}$. Assume that the classical assumptions are satisfied.
(a) (4 points) Find the OLS estimators of β_{1} and β_{2} in Model 1.
(b) (4 points) Find the OLS estimators of β_{1}^{*} and β_{2}^{*} in Model 2. Are they identical to $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ you obtained in (a)?
(c) (2 points) Is the R^{2} different between Model 1 and Model 2?

Student D considers the log-linear models by taking log on both dependent variable and regressor in Model 1 and Model 2:

Model 3: $\ln Y_{i}=\alpha_{1}+\alpha_{2} \ln X_{i}+u_{i}$
Model 4: $\ln Y_{i}^{*}=\alpha_{1}^{*}+\alpha_{2}^{*} \ln X_{i}^{*}+u_{i}^{*}$
(d) (4 points) Discuss the difference between the OLS estimator of β_{2} in Model 1 and that of α_{2} in Model 3, in terms of interpretation.
(e) (4 points) Establish the relationship between $\hat{\alpha}_{2}$ from Model $\mathbf{3}$ and $\hat{\alpha}_{2}^{*}$ from Model 4. Are they identical?
(f) (2 points) Is the R^{2} different between Model 3 and Model 4?
2. (Total 20 points) Consider the following regression output:

$$
\begin{gathered}
\text { Income }=\underset{(8541)}{26191}+\underset{(720)}{5040} \text { Education } \\
n=251 \quad R S S=50000 \quad E S S=30000 \\
\quad \text { (standard errors in parentheses) }
\end{gathered}
$$

where Income is annual income in dollars, Education is educational attainment in years.
(a) (5 points) How do you interpret this regression?
(b) (5 points) Test the hypothesis: $H_{0}: \beta_{2}=0$ against $H_{1}: \beta_{2} \neq 0$ at 5% significance level. (Note: $t_{\alpha / 2}$ is 1.64 when $\alpha=0.1,1.96$ when $\alpha=0.05$, and 2.57 when $\alpha=0.01$.)
(c) (5 points) Report R^{2} of this regression.
(d) (5 points) Calculate the OLS estimator of σ^{2} using the above regression output.

