Final Exam

(June 16, 2023, 2 hours)

Econometrics (Spring 2023)
Professor: Wonmun Shin

Part I

True or False

(Total 40 points) Read each statement below carefully. Write a T if you think the statement is True. Write an \mathbf{F} if you think the statement is false. Do not forget to state a reason (or concise explanation) for your choice.

1. When there exists a correlation between a regressor and regression errors, the OLS estimator is biased and inefficient because the classical assumptions are not satisfied. Nevertheless, the OLS estimator is still consistent when the sample is sufficiently large.
2. We can compare the coefficients of determination $\left(R^{2}\right)$ between two models, $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}$ and $\ln Y_{i}=\beta_{1}+\beta_{2} \ln X_{i}+e_{i}$ even if variables take different forms each other.
3. As the number of independent variables increases in a regression model, \bar{R}^{2} (adjusted R^{2}) increases less than R^{2}.
4. IV (instrumental variable) regression means that we substitute $X_{2 i}$ (one explanatory variable causing an endogeneity issue) with Z_{i} (an instrument). That is, we estimate $Y_{i}=\beta_{1}+\beta_{2} Z_{i}+\beta_{3} X_{3 i}+e_{i}$ instead of estimating $Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i}$ to obtain IV estimators.
5. Sample regression function (or fitted line) $\hat{Y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}$ obtained by least square estimation must pass through (\bar{X}, \bar{Y}).
6. If there is near multicollinearity in a regression model, then the F-statistic of overall significance test tends to be small though individual coefficients are significant.
7. Durbin-Watson test (DW test) can only be applied to detect the first-order autoregressive error process.
8. If error terms e_{i} are not normally distributed, the OLS estimators are not BLUE.

Part II

Short Questions

1. (10 points) In the simple linear regression $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}$, we can obtain the OLS estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$. Student A decides to use the demeaned values for X_{i}, considering X_{i} s have large numbers. That is, Student A runs the following regression:

$$
Y_{i}=\alpha_{1}+\alpha_{2}\left(X_{i}-\bar{X}\right)+u_{i}
$$

where \bar{X} is a mean of X_{i} s. Obtain OLS estimators $\hat{\alpha}_{1}$ and $\hat{\alpha}_{2}$, and discuss whether they are different from $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ or not.
2. (10 points) Suppose that Student B, using wage data on 160 randomly selected male workers and 140 female workers, estimates the OLS regression:

$$
\widehat{\text { Wag }}_{i}=\underset{(0.5)}{22}-\underset{(0.6)}{3} \cdot \text { Female }_{i}, \quad R^{2}=0.02
$$

where $W a g e_{i}$ is measured in dollars per hour and Female $_{i}$ is a dummy variable that is equal to 1 if the worker is a female and 0 if the worker is a male. Define the gender wage gap as the difference in mean earnings between men and women. (i) Is there significant gender wage gap based on the above estimation result? (If you need, please refer to the probability table on the last page.) At the same time, Student C uses the same data but regresses $W_{\text {age }}^{i}$ on Male $_{i}$, a dummy variable that is equal to 1 if the worker is a male and 0 if the worker is a female. What are the regression results of Student C ? (ii) Please fill the blanks below:

$$
\left.\widehat{\text { Wage }}_{i}={\underset{(0.49)}{ }]+\left[_{(0.61)}\right] \cdot \text { Male }_{i}, \quad R^{2}=[\quad]}_{[}\right]
$$

3. (10 points) We relax the classical assumptions by allowing for different variances for different observations:

$$
\operatorname{Var}\left(e_{i}\right)=\sigma_{i}^{2} \quad \text { for } i=1,2, \cdots, n
$$

When we faces the above heteroskedasticity, the usual formula for the variance of OLS estimator in $Y_{i}=$ $\beta_{1}+\beta_{2} X_{i}+e_{i}$ is incorrect. As a result, the usual least squares standard error $\left(\sqrt{\operatorname{Var}\left(\hat{\beta}_{2}\right)}=\sqrt{\frac{\hat{\sigma}^{2}}{\sum x_{i}^{2}}}\right)$ is inconsistent, which might lead to wrong test results. Considering the problems caused by heteroskedasticity, Student D obtains White estimator (of standard error). Explain what is White estimator and discuss pros and cons of White correction. (Tip: You don't have to write down the formula of White estimator.)
4. (10 points) Consider a regression model passing through the origin, $Y_{i}=\beta X_{i}+e_{i}$. Let us assume that the regression errors are independent and identically distributed. Specifically, they follow normal distribution, i.e. $e_{i} \sim N\left(0, \sigma^{2}\right)$. Obtain the OLS estimator of the slope coefficient $(\hat{\beta})$, and discuss the efficiency of $\hat{\beta}$.

Part III

Long Questions

1. (Total 15 points) Suppose you want to analyze the effect of the size of houses on house prices, and you run a simple regression $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}$ where Y_{i} is house price (measured in $\$ 100$) and X_{i} is house size (measured in m^{2}). The estimated model is followed:

$$
\hat{Y}_{i}=450+25 X_{i}, \quad R^{2}=0.64
$$

(a) (5 points) Compute the sample correlation coefficient between house price and house size.
(b) (5 points) Imagine that you want to change the measurement unit of house price from $\$ 100$ to $\$ 10$, holding the unit for house size m^{2}. How do your estimates ($\hat{\beta}_{1}$ and $\hat{\beta}_{2}$) change? Is R^{2} in the new regression greater than before, or lower than before?
(c) (5 points) Imagine that you want to change the measurement unit of house size from m^{2} to $f t^{2}$ (square feet), holding the unit for house price $\$ 100$. Note that 1 square feet is equal to 0.1 square meter. How do your estimates ($\hat{\beta}_{1}$ and $\hat{\beta}_{2}$) change? If the slope coefficient in the original regression (using m^{2}) were significant at 5%, then would the slope coefficient in the new regression (using $f t^{2}$) be still significant at 5% ?
2. (Total 20 points) Student E has monthly data on demand for labor (L), aggregate output in current prices (Y), average wages at current prices (W), and consumer price index (P), for the manufacturing sector of a certain country for the period between January 1993 and April 2023. Student E fits the following regression (standard errors in parentheses):

$$
\begin{equation*}
\widehat{\ln L}=-\underset{(0.13)}{3.15}+\underset{(0.09)}{0.42} \ln Y-\underset{(0.10)}{0.34} \ln W-\underset{(0.06)}{0.11} \ln P \quad R S S=10.0 \tag{1}
\end{equation*}
$$

Next, Student E runs a regression $\ln L$ on real output (Y / P) and real wages (W / P) :

$$
\begin{equation*}
\widehat{\ln L}=-\underset{(0.15)}{2.54}+\underset{(0.08)}{0.46} \ln \left(\frac{Y}{P}\right)-\underset{(0.07)}{0.30} \ln \left(\frac{W}{P}\right) \quad R S S=10.1 \tag{2}
\end{equation*}
$$

Finally, Student E fits the following regression:

$$
\begin{equation*}
\widehat{\ln L}=-\underset{(0.14)}{2.55}+\underset{(0.09)}{0.45} \ln \left(\frac{Y}{P}\right)-\underset{(0.08)}{0.32} \ln \left(\frac{W}{P}\right)+\underset{(0.05)}{0.09} \ln \left(\frac{1}{P}\right) \quad R S S=9.9 \tag{3}
\end{equation*}
$$

(a) (5 points) Give an economic interpretation of the slope coefficients in equation (2).
(b) (5 points) The regression model of equation (2) (i.e. $\left.\ln L=\beta_{1}+\beta_{2} \ln (Y / P)+\beta_{3} \ln (W / P)+e\right)$ is a restricted version of the regression model of equation (1) (i.e. $\ln L=\beta_{1}+\beta_{2} \ln Y+\beta_{3} \ln W+\beta_{4} \ln P+e$). Specify the restriction.
(c) (5 points) Test the restriction that you obtained in (b), using $\underline{F \text {-test }}$ (at 5% significance level). Please state the null and alternative hypotheses, the test statistic, the critical value, and your decision.
(d) (5 points) Test the restriction that you obtained in (b), using t-test (at 5% significance level). In order to do that, you need to use the estimation result in equation (3). Note that the regression model of equation (3) is $\ln L=\beta_{1}+\beta_{2} \ln (Y / P)+\beta_{3} \ln (W / P)+\beta_{4} \ln (1 / P)+e$. Do not forget to state the null and alternative hypotheses, the test statistic and the critical value. Do you have the same conclusion in (c)?
3. (Total 30 points) A simple regression model is given by

$$
\begin{equation*}
Y_{t}=\beta_{1}+\beta_{2} X_{t}+e_{t} \quad \text { for } t=1,2, \cdots, n \tag{4}
\end{equation*}
$$

Note that the subscript t represents time unit (eg. year or month) and X_{t} are deterministic. The regression errors e_{t} follow AR(1) model:

$$
\begin{equation*}
e_{t}=0.5 e_{t-1}+\nu_{t} \quad \text { for } t=1,2, \cdots, n \tag{5}
\end{equation*}
$$

where ν_{t} are uncorrelated random variables with constant variance, that is:

$$
E\left(\nu_{t}\right)=0, \quad E\left(\nu_{t}^{2}\right)=1, \quad \text { and } E\left(\nu_{t} \nu_{s}\right)=0 \text { for } t \neq s
$$

(a) (2 points) Calculate the value of $E\left(e_{t}\right)$ and $E\left(e_{t-1}\right)$. Are they constant over time?
(b) (2 points) Calculate the value of $\operatorname{Var}\left(e_{t}\right)$ and $\operatorname{Var}\left(e_{t-1}\right)$. Are they constant over time (i.e. homoskedastic)?
(c) (3 points) Calculate the covariance between e_{t-1} and ν_{t}. Do we have a concern of endogeneity issue in the given $\mathrm{AR}(1)$ model?
(d) (3 points) Student F argues that " e_{t} is correlated with e_{t-1} as shown in equation (5), and therefore e_{t} is uncorrelated with e_{t-2} (the error at time $t-2$)". Is this statement true? Explain.
(e) (5 points) Are the OLS estimators $\hat{\beta}_{1}, \hat{\beta}_{2}$ of the regression (4) the BLUE (best linear unbiased estimator)? Explain.
(f) (5 points) If you answered "No" in (e), state the GLS transformation of equation (4) to obtain the BLUE (here, you should delete some initial observations, but you don't have to take care of it). If you answered "Yes" in (e), then write down "Not Necessary".
(g) (5 points) Student G obtained the BLUE estimates, $\hat{\beta}_{1}^{B L U E}$ and $\hat{\beta}_{2}^{B L U E}$ based on 100 observations. The following numerical information is given to Student G :

$$
\begin{gathered}
Y_{100}=70, \quad X_{100}=30, \quad X_{101}=40 \\
\hat{\beta}_{1}^{B L U E}=-2, \quad \hat{\beta}_{2}^{B L U E}=2
\end{gathered}
$$

Student G would like to predict Y_{101} (the value at time 101). Note that, when error terms follow AR(1) model, the prediction of Y_{101} would be:

$$
\hat{Y}_{101}=\hat{\beta}_{1}^{B L U E}+\hat{\beta}_{2}^{B L U E} X_{101}+\rho \hat{e}_{100}
$$

where ρ is the AR coefficient in equation (5). Calculate the predicted value \hat{Y}_{101}.
(h) (5 points) Now assume that the value of AR coefficient in equation (5) is 0 (zero), not 0.5 . Based on the same 100 observations in (g), Student H estimated β_{1} and β_{2} and the estimates ($\hat{\beta}_{1}$ and $\hat{\beta}_{2}$) happened to be the same as in (g). What is the Student H's predicted value \hat{Y}_{101} ? Is it different from the Student G's predicted value in (g)? Why do you think Student H get the same (or different) predicted value?
4. (Total 15 points) Consider the following model:

$$
G D P_{t}=\beta_{1}+\beta_{2} M_{t}+\beta_{3} M_{t-1}+\beta_{4} \triangle M_{t}+e_{t}
$$

where $G D P_{t}$ is GDP (gross domestic product) at time t, M_{t} is money supply at time t, M_{t-1} is money supply at time $t-1$, and $\triangle M_{t}$ is a change in money supply between time t and $t-1$ (i.e. $\left.\triangle M_{t}=M_{t}-M_{t-1}\right)$. Money supply is exogenously given, and the regression error satisfies the conditions followed: $E\left(e_{t}\right)$ is zero, $\operatorname{Var}\left(e_{t}\right)$ is homoskedastic, and there exists no autocorrelation in errors.
(a) (5 points) Give a proper interpretation of the slope coefficients β_{2}, β_{3}, and β_{4}. Do they economically make sense (i.e. is the above model reasonable from a economic perspective)?
(b) (5 points) Assuming you have the data to estimate the above model, would you succeed in estimating all the slope coefficients of the model? Why or why not?
(b) (5 points) Suppose that $\beta_{3} M_{t-1}$ term is absent from the above model. Would your answer to (b) be the same?

- Probability table for Final Exam:

$-P(F(1,+200) \geq 3.84)=0.05, P(F(1,+200) \geq 6.63)=0.01$ for F distribution with degrees of freedom $(1,+200) .(+200$ indicates for more than 200 degrees of freedom.)
$-P(F(2,+200) \geq 3.00)=0.05, P(F(2,+200) \geq 4.61)=0.01$ for F distribution with degrees of freedom $(2,+200) .(+200$ indicates for more than 200 degrees of freedom.)
$-P(F(3,+200) \geq 2.60)=0.05, P(F(3,+200) \geq 3.78)=0.01$ for F distribution with degrees of freedom $(3,+200) .(+200$ indicates for more than 200 degrees of freedom.)

- $P(Z \geq 1.28)=0.1, P(Z \geq 1.645)=0.05, P(Z \geq 1.96)=0.025, P(Z \geq 2.58)=0.005$ where Z is a standard normal random variable.
(End of Exam, Total 5 Pages)

