Inferences in Multiple Regression

Class 9

Wonmun Shin
(wonmun.shin@sejong.ac.kr)
Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture notes.

Hypothesis Testing of Individual Coefficient

Distribution of OLS Estimators

- We assume that sample size is sufficiently large.
- In the case where sample size is small, we need normality assumption, $e_{i} \sim N\left(0, \sigma^{2}\right)$.
- When sample size is large, we have

$$
\frac{\hat{\beta}_{k}-\beta_{k}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{k}\right)}} \sim N(0,1) \quad \text { for } k=1, \cdots, K
$$

- And we can expect that the values of $\widehat{\operatorname{Var}\left(\hat{\beta}_{k}\right)}$ and $\operatorname{Var}\left(\hat{\beta}_{k}\right)$ are very close, therefore we have

$$
\frac{\hat{\beta}_{k}-\beta_{k}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{k}\right)}} \sim N(0,1) \quad \text { for } k=1, \cdots, K
$$

Hypothesis Testing of Individual Coefficient

- [Step 1] Set the hypothesis
- Two-sided test: $H_{0}: \beta_{k}=0$ v.s. $H_{1}: \beta_{k} \neq 0$
- One-sided test: $H_{0}: \beta_{k}=0$ v.s. $H_{1}: \beta_{k}<0\left(\right.$ or $\left.\beta_{k}>0\right)$
- [Step 2] Test statistic

$$
t=\frac{\hat{\beta}_{k}}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{k}\right)}} \sim N(0,1)
$$

- [Step 3] Set the rejection region
- Choose significance level and find the corresponding critical value
- Set the rejection region: $t>z_{\frac{\alpha}{2}}$ or $t<-z_{\frac{\alpha}{2}}$ (two-sided)
- [Step 4] Decision

Goodness of Fit

Recall: Coefficient of Determination, R^{2}

- Define, as before

$$
\begin{aligned}
& T S S=\sum\left(Y_{i}-\bar{Y}\right)^{2} \\
& E S S=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \\
& R S S=\sum \hat{e}_{i}^{2}
\end{aligned}
$$

\Longrightarrow

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}
$$

- R^{2} is the proportion of the total variation in the dependent variable Y explained by explanatory variables included in the model jointly.

\bar{R}^{2} (Adjusted R^{2})

- Problem of $R^{2}: R^{2}$ increases if more regressors are added in the regression even if there is no economic justification.
- Mathematically, it is a fact that as variables are added, ESS goes up (or RSS goes down) and hence R^{2} goes up.
- Extremely, if you have the same number of regressors as the number of observations, then you have $R^{2}=1$!
- Alternative measure of goodness of fit is Adjusted $R^{2}\left(\bar{R}^{2}\right.$ or $\left.R_{a d j}^{2}\right)$:

$$
\bar{R}^{2}=1-\frac{\frac{R S S}{n-K}}{\frac{T S S}{n-1}}
$$

- \bar{R}^{2} is not necessarily affected by adding more regressor.
- In other words, R^{2} is always increasing when regressor is added but \bar{R}^{2} is not always.

$\bar{R}^{2}\left(\right.$ Adjusted $\left.R^{2}\right)$ [cont'd]

$$
\bar{R}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-K}
$$

- We can show that $\bar{R}^{2}<R^{2}$ for $K>1$.
- Let's define $\alpha=\frac{n-1}{n-K} \rightarrow$ If $K>1$ then $\alpha>1$.

$$
\begin{aligned}
\bar{R}^{2}-R^{2} & =1-\left(1-R^{2}\right) \alpha-R^{2} \\
& =1-\alpha+R^{2} \alpha-R^{2} \\
& =(1-\alpha)-(1-\alpha) R^{2} \\
& =\underbrace{(1-\alpha)}_{<0} \underbrace{\left(1-R^{2}\right)}_{>0}<0
\end{aligned}
$$

- It implies that as the number of independent variables increases, \bar{R}^{2} increases less than R^{2}.

$\bar{R}^{2}\left(\right.$ Adjusted $\left.R^{2}\right)$ [cont'd]

- \bar{R}^{2} can be negative, although R^{2} is necessarily non-negative.
- In case \bar{R}^{2} turns out to be negative, its value is taken as zero.
- IMPORTANT NOTE: R^{2} and \bar{R}^{2} should not be used as a device for the selection of independent variables or a model selection.
- Also, it is crucial to note that in comparing two models on the basis of the coefficient of determination, whether adjusted or not, the sample size n and the dependent variable must be same!
- For example, we cannot compare $R^{2} \mathrm{~s}$ of the two models below:

$$
\begin{aligned}
Y_{i} & =\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i} \\
\ln Y_{i} & =\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i}
\end{aligned}
$$

Test of Linear Restriction

Restricted Linear Squares

- There are many cases where tests involving more than one parameter are appropriate in the multiple regression.
- Model

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}+e_{i}
$$

- Examples of linear restrictions

$$
\begin{aligned}
& H_{0}: \beta_{2}=\beta_{3}=\cdots=\beta_{K}=0 \\
& H_{0}: \beta_{2}=\beta_{3} \\
& H_{0}: \beta_{2}+2 \beta_{3}=1 \\
& H_{0}: \beta_{3}=\beta_{4}=\beta_{5}=0
\end{aligned}
$$

Restricted Linear Squares [cont'd]

- An example of restricted regression

$$
\begin{gathered}
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i} \\
H_{0}: \beta_{3}=0
\end{gathered}
$$

- Estimation under restriction:

$$
\begin{gathered}
\min \sum \hat{e}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{2 i}\right)^{2} \text { w.r.t. } \hat{\beta}_{1}, \hat{\beta}_{2} \\
R S S_{R}=\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{2 i}\right)^{2} \\
=\text { Restricted } R S S
\end{gathered}
$$

- Estimation without restriction:

$$
\begin{gathered}
\min \sum \hat{e}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{2 i}-\hat{\beta}_{3} X_{3 i}\right)^{2} \text { w.r.t. } \hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3} \\
R S S_{U}=\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{2 i}-\hat{\beta}_{3} X_{3 i}\right)^{2} \\
=\text { Unrestricted RSS }
\end{gathered}
$$

Restricted Linear Squares [cont'd]

- $R S S S_{U} \leq R S S_{R}$ always!
- This is because the restricted regression model is just a special form of the unrestricted model (that is, when $\beta_{3}=0$).
- The restricted regression can be obtained by minimizing

$$
\sum \hat{e}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{2 i}-0 \cdot X_{3 i}\right)^{2}
$$

which is the case restricting $\hat{\beta}_{3}$ to be zero on the unrestricted model.

- Therefore, if you allow for $\hat{\beta}_{3}$ to be non-zero, you can only decrease the value of $R S S$.

Test of Linear Restriction

- We want to test whether the linear restriction of interest is true or not.
- Note that H_{0} (e.g. $H_{0}: \beta_{3}=0$) is the linear restriction of interest.

$$
\left\{\begin{array}{l}
\text { If } H_{0} \text { is true, then } R S S_{U} \approx R S S_{R} \\
\text { If } H_{0} \text { is false, then } R S S_{U}<R S S_{R}
\end{array}\right.
$$

- Hence, we will consider $R S S_{R}-R S S_{U}$ as the basis of the test statistic.
- We reject H_{0} if $R S S_{R}-R S S_{U}$ is large!

Test of Linear Restriction [cont'd]

- Review of F distribution

$$
F \sim F\left(d_{1}, d_{2}\right)
$$

- Random variable F has the F distribution with degrees of freedom $\left(d_{1}, d_{2}\right)$
- The pdf is positively skewed and located over the range of positive numbers.
- If $V_{1} \sim \chi^{2}\left(d_{1}\right), V_{2} \sim \chi^{2}\left(d_{2}\right)$, and V_{1} and V_{2} are independent, then

$$
F=\frac{V_{1} / d_{1}}{V_{2} / d_{2}} \sim F\left(d_{1}, d_{2}\right)
$$

Test of Linear Restriction [cont'd]

- When sample size is large (or under normality assumption when sample size is small), it can be shown that

$$
\begin{gathered}
V_{1}=\frac{R S S_{R}-R S S_{U}}{\sigma^{2}} \sim \chi^{2}(J) \\
V_{2}=\frac{R S S_{U}}{\sigma^{2}} \sim \chi^{2}(n-K)
\end{gathered}
$$

- J : the number of restrictions
- n: sample size
- K : the number of explanatory variables (including constant) in the unrestricted model
- We can also show that V_{1} and V_{2} are independent.
- Therefore, we have

$$
F=\frac{V_{1} / J}{V_{2} /(n-K)} \sim F(J, n-K)
$$

Test of Linear Restriction [cont'd]

- Question: Why do we need V_{2} when our interest is only $R S S_{R}-R S S_{U}$?
- Answer: We do not know σ^{2} !

$$
\begin{aligned}
F & =\frac{V_{1} / J}{V_{2} /(n-K)}=\frac{\frac{R S S_{R}-R S S_{U}}{\sigma^{2}} / J}{\frac{R S S_{U}}{\sigma^{2}} /(n-K)} \\
& =\frac{\left(R S S_{R}-R S S_{U}\right) / J}{R S S_{U} /(n-K)} \sim F(J, n-K)
\end{aligned}
$$

- Alternative form:

$$
F=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) / J}{\left(1-R_{U}^{2}\right) /(n-K)} \sim F(J, n-K)
$$

- $R_{U}^{2}=1-\frac{R S S_{U}}{T S S}:$ Unrestricted R^{2}
- $R_{R}^{2}=1-\frac{R S S_{R}}{T S S}$: Restricted R^{2}
- Note that $R_{U}^{2} \geq R_{R}^{2}$ always!

Test of Linear Restriction [cont'd]

- [Step 1] Set the hypothesis
- H_{0} is the linear restriction, and H_{1} is the restriction is false.
- e.g. $H_{0}: \beta_{3}=0$ (1 restriction), $H_{0}: \beta_{2}=\beta_{3}=0$ (2 restrictions, joint test)
- [Step 2] Test statistic: F statistic

$$
F=\frac{\left(R S S_{R}-R S S_{U}\right) / J}{R S S_{U} /(n-K)} \sim F(J, n-K)
$$

- [Step 3] Set the rejection region
- Choose significance level and find the corresponding critical value (from F distribution)
- Set the rejection region: $F>F_{\alpha}(J, n-K)$
- [Step 4] Decision
- If we reject H_{0}, we conclude that the restriction is not valid.

Example

$$
\begin{equation*}
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i} \tag{1}
\end{equation*}
$$

(1) $H_{0}: \beta_{2}=\beta_{3}=0$ v.s. $H_{1}: \beta_{2} \neq 0$ or $\beta_{3} \neq 0$

- Under H_{0}, we have

$$
\begin{equation*}
Y_{i}=\beta_{1}+e_{i} \tag{2}
\end{equation*}
$$

- RSS from (1) is $R S S_{U}$, and RSS from (2) is $R S S_{R}$
- $J=2, K=3 \Longrightarrow$ We can compute F statistic.
(2) $H_{0}: \beta_{2}+2 \beta_{3}=1$ v.s. $H_{1}: \beta_{2}+2 \beta_{3} \neq 1$
- Under $H_{0}, \beta_{2}=1-2 \beta_{3}$ so we have

$$
\begin{align*}
Y_{i} & =\beta_{1}+\left(1-2 \beta_{3}\right) X_{2 i}+\beta_{3} X_{3 i}+e_{i} \\
\longrightarrow Y_{i}-X_{2 i} & =\beta_{1}+\beta_{3}\left(X_{3 i}-2 X_{2 i}\right)+e_{i} \tag{3}
\end{align*}
$$

- RSS from (1) is $R S S_{U}$, and RSS from (3) is $R S S_{R}$
- $J=1, K=3 \Longrightarrow$ We can compute F statistic.
- Note that we cannot use R_{U}^{2} and R_{R}^{2} in this case because the dependent variables are not same.

Test of Overall Significance

Test of Overall Significance

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}+e_{i}
$$

- Consider a joint test of the relevance of all the included explanatory variables as

$$
\begin{cases}H_{0}: & \beta_{2}=\beta_{3}=\cdots=\beta_{K}=0 \\ H_{1}: & \text { At least one of the } \beta_{k} \text { is non-zero. }\end{cases}
$$

- Then, if the null is true, none of the regressors influence Y, and thus the model is not constructed well at all!

Test of Overall Significance [contd]

- Under H_{0}, the model becomes

$$
Y_{i}=\beta_{1}+e_{i} \quad(\text { Restricted model })
$$

$$
\begin{aligned}
R S S_{R} & =\sum\left(Y_{i}-\hat{\beta}_{1}\right)^{2} \\
& =\sum\left(Y_{i}-\bar{Y}\right)^{2}=T S S
\end{aligned}
$$

- What is RSS from the unrestricted model?

$$
\begin{aligned}
R S S_{U} & =\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{2 i}-\cdots-\hat{\beta}_{K} X_{K i}\right)^{2} \\
& =\text { the usual } R S S
\end{aligned}
$$

- Note that J (\# of restrictions) is $K-1$.

Test of Overall Significance [conted]

$$
\begin{aligned}
F & =\frac{\left(R S S_{R}-R S S_{U}\right) / J}{R S S_{U} /(n-K)}=\frac{(T S S-R S S) /(K-1)}{R S S /(n-K)} \\
& =\frac{E S S /(K-1)}{R S S /(n-K)} \sim F(K-1, n-K)
\end{aligned}
$$

- Moreover,

$$
\begin{aligned}
F & =\frac{E S S /(K-1)}{R S S /(n-K)}=\frac{E S S}{R S S} \cdot \frac{n-K}{K-1} \\
& =\frac{E S S / T S S}{R S S / T S S} \cdot \frac{n-K}{K-1} \\
& =\frac{R^{2}}{1-R^{2}} \cdot \frac{n-K}{K-1} \sim F(K-1, n-K)
\end{aligned}
$$

- Therefore, if you want to test the overall significance of a model, F statistic can be reduced into a simpler form.
- We conclude the model has overall significance if $F_{\square}>F_{f}(K-1, \underline{\underline{\underline{n}}}-K)$.

Joint vs. Individual Test

Single Coefficient Testing

- As we discussed before, you can test a significance of a single coefficient in the multiple regression using t-test.
- We can get the same result with F-test because F-test statistic is exactly same as the square of t-test statistic.
- [Optional] $F(1, n-K)=[t(n-K)]^{2}$
- Therefore, the p-values for the two tests are identical under two-sided alternative, meaning that the same conclusion will be drawn whichever test is used.
- However, you cannot have the same equivalence with one-sided test for the single coefficient since F-test is not appropriate when the alternative is an inequality.

Joint vs. Individual Test

- Consider the following two different testings:

$$
\begin{gather*}
H_{0}: \beta_{2}=\beta_{3}=0 \tag{4}\\
\left\{\begin{array}{l}
H_{0}: \beta_{2}=0 \\
H_{0}: \beta_{3}=0
\end{array}\right. \tag{5}
\end{gather*}
$$

- Testing with (4) is "Joint test".
- It involves F-test and allows the correlation between two parameters.
- It is related to confidence ellipse.
- Testing with (5) is two "Individual test".
- It does not consider the possibility of $\beta_{2}=0$ when we perform the test about $H_{0}: \beta_{3}=0$.
- It is related to confidence interval.
- Therefore, it is possible that we can get conflicting results from these two tests.

