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Introduction: ARMA Models



Approximation of Wold Representation

Yt = µ + et + ψ1et−1 + ψ2et−2 + · · ·

There are infinite number of parameters to estimate to analyze
impulse-response. (ψ1, ψ2, · · · )

BTW, if ψ1 = φ, ψ2 = φ2, ψ3 = φ3, · · · , ψj = φj , · · · , then what we should
estimate is just one, φ.

Actually, the above restrictions imply the following simple model:

Yt = δ + φYt−1 + et

Iterative substitution:
Yt = δ

(
1+ φ + φ2 + · · ·+ φj−1)+ φjYt−j + et + φet−1 + · · ·+ φjet−j

|φ| < 1: φj converges to zero when j → ∞.

j → ∞: Yt =
δ

1−φ + et + φet−1 + φ2et−2 + · · ·+ φjet−j + · · ·
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ARMA Models: 1. AR(p)

1. AR(p) process (Auto-Regressive process of order p)

Yt = δ + φ1Yt−1 + φ2Yt−1 + · · ·+ φpYt−p + et

We can transform the above process to Wold representation using iterative
substitution.

While Wold representation has infinite components, AR(p) process has finite
components.

The specific model of AR process depends on p → In the AR(p) process, Yt
is explained by its previous p terms.
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ARMA Models: 2. MA(q)

2. MA(q) process (Moving-Average process of order q)

Yt = µ + et + θ1et−1 + θ2et−2 + · · ·+ θqet−q

Note that the shocks before time q do not affect Yt on the above process.

That is, in the MA(q) process, Yt is explained by the current shock and
previous q shocks.

MA(q) process is a sort of approximation of Wold representation because it
ignores very small θq+j for j ≥ 1.
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ARMA Models: 3. ARMA(p, q)

3. ARMA(p, q) process

Yt = δ + φ1Yt−1 + · · ·+ φpYt−p︸ ︷︷ ︸
AR(p)

+ et + θ1et−1 + · · ·+ θqet−q︸ ︷︷ ︸
MA(q)

Mixed process: ARMA(p, q) = AR(p) + MA(q)

In that sense, AR(p) = ARMA (p, 0) and MA(q) = ARMA(0, q)

Also, we can transform the above process into Wold representation using
iterative substitution.
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Stationary AR(1) Process



Stationary AR(1) Process

Yt = δ + φYt−1 + et , et ∼ iidN
(
0, σ2)

1. Expectation

E (Yt) = δ + φE (Yt−1) + E (et)

Stationarity: Time-invariant expectation i .e. E (Yt) = E (Yt−1)

White noise: E (et) = 0

E (Yt) = δ + φE (Yt)

→ (1− φ)E (Yt) = δ

→ E (Yt) =
δ

1− φ
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Stationary AR(1) Process [cont’d]

2. Variance

Var (Yt) = Var (δ) + φ2Var (Yt−1) + Var (et) + 2Cov (Yt−1, et)

Stationarity: Time-invariant variance i .e. Var (Yt) = Var (Yt−1)

White noise: Var (et) = σ2

Var (Yt) = φ2Var (Yt) + σ2

→
(
1− φ2)Var (Yt) = σ2

→ Var (Yt) =
σ2

1− φ2
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Stationary AR(1) Process [cont’d]

3. Auto-Covariance (Auto-Correlation)

Additional assumption: δ = 0

Since we want to see a dynamics of Yt , the constant δ does not harm a result.

Note that the constant δ matters for the first moment, not the second
moment.

Auto-Covariance:
γj = Cov (Yt ,Yt−j ) = E (YtYt−j )
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Stationary AR(1) Process [cont’d]

Here, E (YtYt−j ) = γj , E (Yt−1Yt−j ) = γj−1 and E (etYt−j ) = 0 :

γj = φγj−1

Since auto-correlation ρj is defined by γj /γ0:

ρj = φρj−1
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Stationarity Condition of AR(1) Model

ρ0 = 1
ρ1 = φ

ρ2 = φ2

ρ3 = φ3

...
ρ∞ = φ∞

Recall, stationarity requires ρ∞ = φ∞ → 0!!

∴ Stationary condition is |φ| < 1

Advanced Econometrics (Fall 2022) ARMA 10 / 41



Impulse-Response Analysis
Recall that we have the following under the stationary condition:

∂Yt+j
∂et

=
∂Yt

∂et−j

In order to analyze impulse-response, we need the Wold representation.

We can easily transform AR(1) model into the Wold representation:

Yt = φYt−1 + et

= φ (φYt−2 + et−1) + et = φ2Yt−2 + et + φet−1
...
= et + φet−1 + φ2et−2 + · · ·+ φjet−j + · · ·

Therefore, we know that:

∂Yt+j
∂et

=
∂Yt

∂et−j
= φj
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Stationary AR(2) Process



Stationary AR(2) Process

Yt = δ + φ1Yt−1 + φ2Yt−2 + et , et ∼ iidN
(
0, σ2)

1. Expectation

E (Yt) = δ + φ1E (Yt−1) + φ2E (Yt−2) + E (et)

→ E (Yt) = δ + φ1E (Yt) + φ2E (Yt)

→ (1− φ1 − φ2)E (Yt) = δ

→ E (Yt) =
δ

1− φ1 − φ2
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Stationary AR(2) Process [cont’d]

2. Variance

To earn the variance of Yt we should compute a covariance between Yt−1
and Yt−2, which requires complicated algebra.

Just let the variance of Yt be γ0 (without computation).

Var (Yt) = γ0

Advanced Econometrics (Fall 2022) ARMA 13 / 41



Stationary AR(2) Process [cont’d]

3. Auto-Covariance (Auto-Correlation)

Again, additional assumption: δ = 0

Yt = φ1Yt−1 + φ2Yt−2 + et

→ YtYt−j = (φ1Yt−1 + φ2Yt−2 + et)Yt−j

= φ1Yt−1Yt−j + φ2Yt−2Yt−j + etYt−j

Taking expectation operator:

E (YtYt−j ) = φ1E (Yt−1Yt−j ) + φ2E (Yt−2Yt−j ) + E (etYt−j )

→ γj = φ1γj−1 + φ2γj−2

(→ ρj = φ1ρj−1 + φ2ρj−2)

Stationarity when γj → 0 (or ρj → 0) as j → ∞.
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Impulse-Response Analysis: State-Space Form

Note that the impulse-response analysis in AR(1) was simple: ∂Yt+j
∂et

= φj

Idea: If we transform AR(2) to a form of AR(1), the impulse-response
analysis would be simple!

Define Ỹt =

(
Yt

Yt−1

)
, then Ỹt−1 =

(
Yt−1
Yt−2

)
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Impulse-Response Analysis: State-Space Form [cont’d]

{
Yt = φ1Yt−1 + φ2Yt−2 + et : AR(2)
Yt−1 = Yt−1

→
(

Yt
Yt−1

)
=
(

φ1 φ2
1 0

)(
Yt−1
Yt−2

)
+
(

et
0

)

→ Ỹt = F · Ỹt−1 + ẽt : AR(1) form
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Impulse-Response Analysis: State-Space Form [cont’d]

Likewise, we can transform not only AR(2) but also AR(3), AR(4), · · · ,
AR(p) into AR(1) form.

We call the AR(1) form of AR(p) State-Space form.
(optional) A state-space model consists of a transition equation and a
measurement equation.

Transition equation describes the evolution of the state vector over time.
Measurement equation relates the observed data to the state vector.
So, rigorously speaking, the AR(1) representation of AR(p) is the transition
equation of the whole state-space representation.

Now we can transform the state-space form of AR(2) to Wold representation.

Ỹt = ẽt + F ẽt−1 + F 2ẽt−2 + · · ·+ F j ẽt−j + · · ·
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Impulse-Response Analysis: State-Space Form [cont’d]

What we want to know is the impact of et−j on Yt .

(
Yt

Yt−1

)
=

(
et
0

)
+

(
φ1 φ2
1 0

)(
et−1
0

)
+

(
φ1 φ2
1 0

)2 ( et−2
0

)
+ · · ·+

(
φ1 φ2
1 0

)j ( et−j
0

)
+ · · ·

Therefore,

∂Yt+j
∂et

=
∂Yt

∂et−j
= F j

11 : (1,1) element of F j
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Stationarity Condition of AR(2): Eigenvalue

Note that φ in AR(1) Yt = φYt−1 + et determines the persistence of shock.

Likewise, there exists “something” that determines persistence in AR(2),
which is related to eigenvalues of the matrix F .

Please refer to your materials (or textbooks or Google materials) for
Mathematics for Economics or Linear Algebra to understand eigenvalues,
eigenvectors, characteristic equation, and diagonalization.

We will skip the detailed mathematics for this course, and instead will take
the results and will learn the shortcut obtaining eigenvalues of F .

Advanced Econometrics (Fall 2022) ARMA 19 / 41



Stationarity Condition of AR(2): Eigenvalue [cont’d]

We can diagonalize the matrix F by:

F = C ·Λ · C−1

where C is the matrix consisting of eigenvectors and Λ is a diagonal matrix
that has distinct eigenvalues.

According to the properties of diagonalization, F j = C ·Λj · C−1.

Therefore,

F j =

(
c11 c12
c21 c22

)(
λj

1 0
0 λj

2

)(
c∗11 c∗12
c∗21 c∗22

)

=⇒ ∂Yt+j
∂et

= F j
11 = c11c∗11λj

1 + c12c∗21λj
2
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Stationarity Condition of AR(2): Eigenvalue [cont’d]

Stationarity condition requires F j
11 converges zero as j goes to infinity.

Note that c11c∗11 + c12c∗21 = 1 (∵ properties of inverse-matrix)

Thus, F j
11 is the weighted average of λj

1 and λj
2.

Stationary condition

|λ1| < 1, |λ2| < 1

That is, φ in AR(1) is corresponding to λ1, λ2 in AR(2).

The eigenvalues determine the persistent of AR(2).

We can apply the above condition to AR(p) i .e. the stationary condition of
AR(p) is |λ1| < 1, |λ2| < 1, |λ3| < 1, · · · , |λp | < 1.
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Stationarity Condition of AR(2): Eigenvalue [cont’d]

Then, how to get eigenvalue of the matrix F?

We should derive the characteristic equation to obtain eigenvalues.

And we can derive the characteristic equation easily from the autocorrelation
function (without any complicated procedure).

Autocorrelation function of AR(2)

ρj = φ1ρj−1 + φ2ρj−2

→ ρj − φ1ρj−1 − φ2ρj−2 = 0

Characteristic equation of AR(2)

λ2 − φ1λ− φ2 = 0
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MA(q) Process



MA(1) Process

Yt = µ + et + θet−1, et ∼ iidN
(
0, σ2)

1. Expectation

E (Yt) = E (µ) + E (et) + θE (et−1) = µ

Note that we do not need any assumption of stationarity.

2. Variance

Var (Yt) = Var (et) + θ2Var (et−1) =
(
1+ θ2) σ2

Again, we do not need any assumption of stationarity.
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MA(1) Process [cont’d]

3. Auto-Covariance (Auto-Correlation)

Additional assumption: µ = 0

Auto-Covariance with time difference 1:

γ1 = Cov (Yt ,Yt−1) = E (YtYt−1)

= E [(et + θet−1) (et−1 + θet−2)]

= E
(
etet−1 + θetet−2 + θe2

t−1 + θ2et−1et−2
)

= θE
(
e2

t−1
)

= θσ2
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MA(1) Process [cont’d]

How about auto-covariance with time difference 2:

γ2 = Cov (Yt ,Yt−2) = E (YtYt−2)

= E [(et + θet−1) (et−2 + θet−3)]

= E
(
etet−2 + θetet−3 + θet−1et−2 + θ2et−1et−3

)
= 0

Likewise, the auto-covariances with time difference greater than 2 are zero!

Therefore, we know that{
ρ1 6= 0
ρ2 = ρ3 = ρ4 = · · · = 0
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MA(1) Process [cont’d]

4. Impulse-response analysis

MA(1) process is the Wold representation in itself.

∂Yt+1
∂et

=
∂Yt

∂et−1
= θ

∂Yt+j
∂et

=
∂Yt

∂et−j
= 0 for j ≥ 2

4. Stationary condition

MA(1) process is ALWAYS stationary without any condition!
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MA(2) Process

Yt = µ + et + θ1et−1 + θet−2, et ∼ iidN
(
0, σ2)

1. Expectation

E (Yt) = E (µ) + E (et) + θ1E (et−1) + θ2E (et−2) = µ

2. Variance

Var (Yt) = Var (et) + θ2
1Var (et−1) + θ2

2Var (et−2) =
(
1+ θ2

1 + θ2
2
)

σ2
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MA(2) Process [cont’d]

3. Auto-Covariance (Auto-Correlation)

{
γ1 6= 0, γ2 6= 0
γ3 = γ4 = γ5 = · · · = 0

We can extend our result to MA(q) model.

Then, MA(q) process is always stationary?

Yes! MA(q) process is stationary only if q is FINITE!
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Stationary ARMA(p, q) Model



Stationary ARMA Model

So far, we have learned AR model and MA model.

We need the stationary condition for AR model, whereas MA model does not
require any condition other than finite order.

ARMA model is a mixed form of AR model and MA model → It is intuitive
that AR part determines the stationarity of ARMA model.

For example, the stationary condition of ARMA(2,1) is equal to the stationary
condition of AR(2) (or ARMA (2,0)).
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Lag Operator

Lag Operator (L)

In time series analysis, the lag operator L operates on an element of a time
series to produce the previous element.

For example,

LYt = Yt−1

The lag operator can be raised to arbitrary integer powers so that

LkYt = Yt−k

For example,

L2Yt = LLYt = L (LYt) = LYt−1 = Yt−2

L3Yt = LLLYt = LL (LYt) = L (LYt−1) = LYt−2 = Yt−3
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AR Model in Lag Operator

AR(1) model:

Yt = φYt−1 + et

→ Yt − φLYt = et

→ (1− φL)Yt = et

Define φ (L) = 1− φL which is called polynomial equation in lag operator.

AR(2) model:

Yt = φ1Yt−1 + φ2Yt−2 + et

→ Yt − φ1LYt − φ2L2Yt = et

→
(
1− φ1L− φ2L2)Yt = et

→ φ (L)Yt = et where φ (L) = 1− φ1L− φ2L2
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Converting into Wold Representation

Why is the lag operator useful?

Note that our goal is converting a stationary process into a Wold
representation.

Method 1: Iterative substitution

Yt = φYt−1 + et

= φ (φYt−2 + et−2) + et

= φ2Yt−2 + et + φet−2
...
= et + φet−1 + φ2et−2 + · · ·

This method is not that difficult in the case of AR(1).

But we already know that AR(2) or higher order AR(p) are complicated in
using iteration.
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Converting into Wold Representation [cont’d]

Method 2: Lag operator

Yt = φYt−1 + et

→ (1− φL)Yt = et

→ Yt =
1

1− φLet

The stationary condition of AR(1) is |φ| < 1 → If we treat it as |φL| < 1:

1
1− φL = 1+ φL + (φL)2 + (φL)3 + · · ·

Then, the last equation becomes:

Yt =
(
1+ φL + (φL)2 + (φL)3 + · · ·

)
et

= et + φet−1 + φ2et−2 + φ3et−3 + · · ·
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Converting into Wold Representation [cont’d]

We can generalize the method 2 with respect to AR(p):

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + et

→ φ (L)Yt = et

→ Yt = φ−1 (L) et
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ARMA Model in Lag Operator

MA(1) model:

Yt = µ + et + θet−1

→ Yt = µ + et + θLet

→ Yt = µ + (1+ θL) et

→ Yt = µ + θ (L) et where θ (L) = 1+ θL

In general MA(q) model is Yt = µ + θ (L) et

Then, how about ARMA(p, q)?

φ (L)Yt = µ + θ (L) et

As we discussed, ARMA model can be always converted into the Wold
representation.
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Stationary Condition Revisited

Another usefulness of lag operator is regarding stationary condition.

Recall, in the case of AR(2) model, the autocorrelation function is:

ρj = φ1ρj−1 + φ2ρj−2

We can derive the characteristic equation directly from the above:

λ2 − φ1λ− φ2 = 0

Then we can solve to λ and get two solutions λ1 and λ2.

The stationary condition of AR(2) is:

|λ1| < 1, |λ2| < 1
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Stationary Condition Revisited [cont’d]

Note that the polynomial equation in lag operator for AR(2) is:

φ (L) = 1− φ1L− φ2L2

Suppose that we solve φ (L) = 0 to L. What are the solutions?

Substitute L with 1/λ, then

1− φ1

(
1
λ

)
− φ2

(
1
λ

)2
= 0

→ λ2 − φ1λ− φ2 = 0

That is, the solutions of φ (L) = 0 is the reciprocal of the solutions of
characteristic equations.

L1 =
1

λ1
, L2 =

1
λ2

Advanced Econometrics (Fall 2022) ARMA 37 / 41



Stationary Condition Revisited [cont’d]

Therefore, we can rewrite the stationary condition by:

|λ1| < 1, |λ2| < 1 ⇐⇒ |L1| > 1, |L2| > 1

Also we can generalize the above result onto ARMA(p, q)!
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Box-Jenkin’s Approach



Partial Autocorrelation Function

Question: How to identify the order p and q for ARMA model?

In case of MA model, we can easily identify q from autocorrelation function.

However, AR model as well as ARMA model is difficult to identify the order
just from the autocorrelation function.

Therefore, partial autocorrelation is suggested as a supplementary method.

For example, suppose that we have a time series data Yt that AR(1) model
explains best.

But we don’t know AR(1) model is the best one for Yt ex ante.

So we consider all AR(p) models as candidates, and then test the significance
of p.

Advanced Econometrics (Fall 2022) ARMA 39 / 41



Partial Autocorrelation Function [cont’d]

AR(1) : Yt = φ11Yt−1 + et

AR(2) : Yt = φ21Yt−1 + φ22Yt−2 + et

AR(3) : Yt = φ31Yt−1 + φ32Yt−2 + φ32Yt−3 + et
...

AR(j) : Yt = φj1Yt−1 + φj2Yt−2 + · · ·+ φjjYt−j + et
...

Estimate each model and get φ̂11, φ̂22, φ̂33, · · · , φ̂jj , · · · .

φ̂11, φ̂22, φ̂33, · · · , φ̂jj , · · · are called partial correlations.

Since the data is explained by AR(1) best, φ̂11 will be significant and the
others will not be significant.

In general, if we find significant φ̂jj , the model that explains data best would
be AR(j).
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Box-Jenkin’s Approach to ARMA

Question: How to identify the order p and q for ARMA model?

[Step 1] Given data, draw the autocorrelation function and the partial
autocorrelation function.

[Step 2] Based on the ACF and the PACF, select the candidates of
combination of p and q for ARMA (p, q).

[Step 3] Estimate the coefficients of each candidate.

[Step 4] Diagnostic test: White noise test
If the residual of a model does not pass the white noise test, the model will
not be a good one.

[Step 5] Select the best model using AIC (Akaike Information Criterion) or
BSC (Bayes-Schwartz Criterion)

We will choose the model whose score is lower.
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