Stationary ARMA Model

Class 9

Wonmun Shin
(wonmun.shin@sejong.ac.kr)
Department of Economics, Sejong University

* This lecture note is written based on Professor Chang-Jin Kim's lecture note.

Introduction: ARMA Models

Approximation of Wold Representation

$$
Y_{t}=\mu+e_{t}+\psi_{1} e_{t-1}+\psi_{2} e_{t-2}+\cdots
$$

- There are infinite number of parameters to estimate to analyze impulse-response. $\left(\psi_{1}, \psi_{2}, \cdots\right)$
- BTW, if $\psi_{1}=\phi, \psi_{2}=\phi^{2}, \psi_{3}=\phi^{3}, \cdots, \psi_{j}=\phi^{j}, \cdots$, then what we should estimate is just one, ϕ.
- Actually, the above restrictions imply the following simple model:

$$
Y_{t}=\delta+\phi Y_{t-1}+e_{t}
$$

- Iterative substitution:

$$
Y_{t}=\delta\left(1+\phi+\phi^{2}+\cdots+\phi^{j-1}\right)+\phi^{j} Y_{t-j}+e_{t}+\phi e_{t-1}+\cdots+\phi^{j} e_{t-j}
$$

- $|\phi|<1$: ϕ^{j} converges to zero when $j \rightarrow \infty$.
- $j \rightarrow \infty: Y_{t}=\frac{\delta}{1-\phi}+e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\cdots+\phi^{j} e_{t-j}+\cdots$

ARMA Models: 1. AR(p)

1. $\mathbf{A R}(p)$ process (Auto-Regressive process of order p)

$$
Y_{t}=\delta+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}+e_{t}
$$

- We can transform the above process to Wold representation using iterative substitution.
- While Wold representation has infinite components, $\operatorname{AR}(p)$ process has finite components.
- The specific model of AR process depends on $p \rightarrow \operatorname{In}$ the $\operatorname{AR}(p)$ process, Y_{t} is explained by its previous p terms.

ARMA Models: 2. MA (q)

2. MA(q) process (Moving-Average process of order q)

$$
Y_{t}=\mu+e_{t}+\theta_{1} e_{t-1}+\theta_{2} e_{t-2}+\cdots+\theta_{q} e_{t-q}
$$

- Note that the shocks before time q do not affect Y_{t} on the above process.
- That is, in the $\operatorname{MA}(q)$ process, Y_{t} is explained by the current shock and previous q shocks.
- MA(q) process is a sort of approximation of Wold representation because it ignores very small θ_{q+j} for $j \geq 1$.

ARMA Models: $3 . \operatorname{ARMA}(p, q)$

3. $\operatorname{ARMA}(p, q)$ process

$$
Y_{t}=\underbrace{\delta+\phi_{1} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}}_{A R(p)}+\underbrace{e_{t}+\theta_{1} e_{t-1}+\cdots+\theta_{q} e_{t-q}}_{\operatorname{MA}(q)}
$$

- Mixed process: $\operatorname{ARMA}(p, q)=\operatorname{AR}(p)+\operatorname{MA}(q)$
- In that sense, $\operatorname{AR}(p)=\operatorname{ARMA}(p, 0)$ and $\operatorname{MA}(q)=\operatorname{ARMA}(0, q)$
- Also, we can transform the above process into Wold representation using iterative substitution.

Stationary AR(1) Process

Stationary AR(1) Process

$$
Y_{t}=\delta+\phi Y_{t-1}+e_{t}, \quad e_{t} \sim i i d N\left(0, \sigma^{2}\right)
$$

1. Expectation

$$
E\left(Y_{t}\right)=\delta+\phi E\left(Y_{t-1}\right)+E\left(e_{t}\right)
$$

- Stationarity: Time-invariant expectation i.e. $E\left(Y_{t}\right)=E\left(Y_{t-1}\right)$
- White noise: $E\left(e_{t}\right)=0$

$$
\begin{aligned}
E\left(Y_{t}\right) & =\delta+\phi E\left(Y_{t}\right) \\
\rightarrow(1-\phi) E\left(Y_{t}\right) & =\delta \\
\rightarrow E\left(Y_{t}\right) & =\frac{\delta}{1-\phi}
\end{aligned}
$$

Stationary AR(1) Process [cont d]

2. Variance

$$
\operatorname{Var}\left(Y_{t}\right)=\operatorname{Var}(\delta)+\phi^{2} \operatorname{Var}\left(Y_{t-1}\right)+\operatorname{Var}\left(e_{t}\right)+2 \operatorname{Cov}\left(Y_{t-1}, e_{t}\right)
$$

- Stationarity: Time-invariant variance i.e. $\operatorname{Var}\left(Y_{t}\right)=\operatorname{Var}\left(Y_{t-1}\right)$
- White noise: $\operatorname{Var}\left(e_{t}\right)=\sigma^{2}$

$$
\begin{aligned}
\operatorname{Var}\left(Y_{t}\right) & =\phi^{2} \operatorname{Var}\left(Y_{t}\right)+\sigma^{2} \\
\rightarrow \quad\left(1-\phi^{2}\right) \operatorname{Var}\left(Y_{t}\right) & =\sigma^{2} \\
\rightarrow \operatorname{Var}\left(Y_{t}\right) & =\frac{\sigma^{2}}{1-\phi^{2}}
\end{aligned}
$$

Stationary AR(1) Process [contd]

3. Auto-Covariance (Auto-Correlation)

- Additional assumption: $\delta=0$
- Since we want to see a dynamics of Y_{t}, the constant δ does not harm a result.
- Note that the constant δ matters for the first moment, not the second moment.
- Auto-Covariance:

$$
\gamma_{j}=\operatorname{Cov}\left(Y_{t}, Y_{t-j}\right)=E\left(Y_{t} Y_{t-j}\right)
$$

Stationary AR(1) Process [contd]

- Here, $E\left(Y_{t} Y_{t-j}\right)=\gamma_{j}, E\left(Y_{t-1} Y_{t-j}\right)=\gamma_{j-1}$ and $E\left(e_{t} Y_{t-j}\right)=0$:

$$
\gamma_{j}=\phi \gamma_{j-1}
$$

- Since auto-correlation ρ_{j} is defined by γ_{j} / γ_{0} :

$$
\rho_{j}=\phi \rho_{j-1}
$$

Stationarity Condition of AR(1) Model

$$
\begin{aligned}
\rho_{0} & =1 \\
\rho_{1} & =\phi \\
\rho_{2} & =\phi^{2} \\
\rho_{3} & =\phi^{3} \\
\vdots & \\
\rho_{\infty} & =\phi^{\infty}
\end{aligned}
$$

- Recall, stationarity requires $\rho_{\infty}=\phi^{\infty} \rightarrow 0!$!
\therefore Stationary condition is $|\phi|<1$

Impulse-Response Analysis

- Recall that we have the following under the stationary condition:

$$
\frac{\partial Y_{t+j}}{\partial e_{t}}=\frac{\partial Y_{t}}{\partial e_{t-j}}
$$

- In order to analyze impulse-response, we need the Wold representation.
- We can easily transform $\operatorname{AR}(1)$ model into the Wold representation:

$$
\begin{aligned}
Y_{t} & =\phi Y_{t-1}+e_{t} \\
& =\phi\left(\phi Y_{t-2}+e_{t-1}\right)+e_{t}=\phi^{2} Y_{t-2}+e_{t}+\phi e_{t-1} \\
& \vdots \\
& =e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\cdots+\phi^{j} e_{t-j}+\cdots
\end{aligned}
$$

- Therefore, we know that:

$$
\frac{\partial Y_{t+j}}{\partial e_{t}}=\frac{\partial Y_{t}}{\partial e_{t-j}}=\phi^{j}
$$

Stationary AR(2) Process

Stationary AR(2) Process

$$
Y_{t}=\delta+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+e_{t}, \quad e_{t} \sim \operatorname{iid} N\left(0, \sigma^{2}\right)
$$

1. Expectation

$$
\begin{aligned}
E\left(Y_{t}\right) & =\delta+\phi_{1} E\left(Y_{t-1}\right)+\phi_{2} E\left(Y_{t-2}\right)+E\left(e_{t}\right) \\
\rightarrow E\left(Y_{t}\right) & =\delta+\phi_{1} E\left(Y_{t}\right)+\phi_{2} E\left(Y_{t}\right) \\
\rightarrow\left(1-\phi_{1}-\phi_{2}\right) E\left(Y_{t}\right) & =\delta \\
\rightarrow E\left(Y_{t}\right) & =\frac{\delta}{1-\phi_{1}-\phi_{2}}
\end{aligned}
$$

Stationary AR(2) Process [contd]

2. Variance

- To earn the variance of Y_{t} we should compute a covariance between Y_{t-1} and Y_{t-2}, which requires complicated algebra.
- Just let the variance of Y_{t} be γ_{0} (without computation).

$$
\operatorname{Var}\left(Y_{t}\right)=\gamma_{0}
$$

Stationary AR(2) Process [contdd

3. Auto-Covariance (Auto-Correlation)

- Again, additional assumption: $\delta=0$

$$
\begin{aligned}
Y_{t} & =\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+e_{t} \\
\rightarrow \quad Y_{t} Y_{t-j} & =\left(\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+e_{t}\right) Y_{t-j} \\
& =\phi_{1} Y_{t-1} Y_{t-j}+\phi_{2} Y_{t-2} Y_{t-j}+e_{t} Y_{t-j}
\end{aligned}
$$

- Taking expectation operator:

$$
\begin{aligned}
E\left(Y_{t} Y_{t-j}\right) & =\phi_{1} E\left(Y_{t-1} Y_{t-j}\right)+\phi_{2} E\left(Y_{t-2} Y_{t-j}\right)+E\left(e_{t} Y_{t-j}\right) \\
\rightarrow \gamma_{j} & =\phi_{1} \gamma_{j-1}+\phi_{2} \gamma_{j-2} \\
\left(\rightarrow \rho_{j}\right. & \left.=\phi_{1} \rho_{j-1}+\phi_{2} \rho_{j-2}\right)
\end{aligned}
$$

- Stationarity when $\gamma_{j} \rightarrow 0\left(\right.$ or $\left.\rho_{j} \rightarrow 0\right)$ as $j \rightarrow \infty$.

Impulse-Response Analysis: State-Space Form

- Note that the impulse-response analysis in $\operatorname{AR}(1)$ was simple: $\frac{\partial Y_{t+j}}{\partial e_{t}}=\phi^{j}$
- Idea: If we transform $\operatorname{AR}(2)$ to a form of $\operatorname{AR}(1)$, the impulse-response analysis would be simple!
- Define $\tilde{Y}_{t}=\binom{Y_{t}}{Y_{t-1}}$, then $\tilde{Y}_{t-1}=\binom{Y_{t-1}}{Y_{t-2}}$

Impulse-Response Analysis: State-Space Form [cont'd]

$$
\begin{gathered}
\left\{\begin{array}{l}
Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+e_{t} \quad: \operatorname{AR}(2) \\
Y_{t-1}=Y_{t-1}
\end{array}\right. \\
\rightarrow\binom{Y_{t}}{Y_{t-1}}=\left(\begin{array}{cc}
\phi_{1} & \phi_{2} \\
1 & 0
\end{array}\right)\binom{Y_{t-1}}{Y_{t-2}}+\binom{e_{t}}{0} \\
\rightarrow \quad \tilde{Y}_{t}=F \cdot \tilde{Y}_{t-1}+\tilde{e}_{t}: \operatorname{AR}(1) \text { form }
\end{gathered}
$$

Impulse-Response Analysis: State-Space Form [cont'd]

- Likewise, we can transform not only $\operatorname{AR}(2)$ but also $\operatorname{AR}(3), \operatorname{AR}(4), \cdots$, $\operatorname{AR}(p)$ into $\operatorname{AR}(1)$ form.
- We call the $\operatorname{AR}(1)$ form of $\operatorname{AR}(p)$ State-Space form.
- (optional) A state-space model consists of a transition equation and a measurement equation.
- Transition equation describes the evolution of the state vector over time.
- Measurement equation relates the observed data to the state vector.
- So, rigorously speaking, the $\operatorname{AR}(1)$ representation of $\operatorname{AR}(p)$ is the transition equation of the whole state-space representation.
- Now we can transform the state-space form of $\operatorname{AR}(2)$ to Wold representation.

$$
\tilde{Y}_{t}=\tilde{e}_{t}+F \tilde{e}_{t-1}+F^{2} \tilde{e}_{t-2}+\cdots+F^{j} \tilde{e}_{t-j}+\cdots
$$

Impulse-Response Analysis: State-Space Form [cont'd]

- What we want to know is the impact of e_{t-j} on Y_{t}.

$$
\begin{aligned}
\binom{Y_{t}}{Y_{t-1}} & =\binom{e_{t}}{0}+\left(\begin{array}{cc}
\phi_{1} & \phi_{2} \\
1 & 0
\end{array}\right)\binom{e_{t-1}}{0}+\left(\begin{array}{cc}
\phi_{1} & \phi_{2} \\
1 & 0
\end{array}\right)^{2}\binom{e_{t-2}}{0} \\
& +\cdots+\left(\begin{array}{cc}
\phi_{1} & \phi_{2} \\
1 & 0
\end{array}\right)^{j}\binom{e_{t-j}}{0}+\cdots
\end{aligned}
$$

- Therefore,

$$
\frac{\partial Y_{t+j}}{\partial e_{t}}=\frac{\partial Y_{t}}{\partial e_{t-j}}=F_{11}^{j} \quad:(1,1) \text { element of } F^{j}
$$

Stationarity Condition of AR(2): Eigenvalue

- Note that ϕ in $\operatorname{AR}(1) Y_{t}=\phi Y_{t-1}+e_{t}$ determines the persistence of shock.
- Likewise, there exists "something" that determines persistence in $\operatorname{AR}(2)$, which is related to eigenvalues of the matrix F.
- Please refer to your materials (or textbooks or Google materials) for Mathematics for Economics or Linear Algebra to understand eigenvalues, eigenvectors, characteristic equation, and diagonalization.
- We will skip the detailed mathematics for this course, and instead will take the results and will learn the shortcut obtaining eigenvalues of F.

Stationarity Condition of $\operatorname{AR}(2)$: Eigenvalue [cont'd]

- We can diagonalize the matrix F by:

$$
F=C \cdot \Lambda \cdot C^{-1}
$$

- where C is the matrix consisting of eigenvectors and Λ is a diagonal matrix that has distinct eigenvalues.
- According to the properties of diagonalization, $F^{j}=C \cdot \Lambda^{j} \cdot C^{-1}$.
- Therefore,

$$
\begin{aligned}
F^{j} & =\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1}^{j} & 0 \\
0 & \lambda_{2}^{j}
\end{array}\right)\left(\begin{array}{ll}
c_{11}^{*} & c_{12}^{*} \\
c_{21}^{*} & c_{22}^{*}
\end{array}\right) \\
& \Longrightarrow \frac{\partial Y_{t+j}}{\partial e_{t}}=F_{11}^{j}=c_{11} c_{11}^{*} \lambda_{1}^{j}+c_{12} c_{21}^{*} \lambda_{2}^{j}
\end{aligned}
$$

Stationarity Condition of $\operatorname{AR}(2)$: Eigenvalue [cont'd]

- Stationarity condition requires F_{11}^{j} converges zero as j goes to infinity.
- Note that $c_{11} c_{11}^{*}+c_{12} c_{21}^{*}=1$ (\because properties of inverse-matrix $)$
- Thus, F_{11}^{j} is the weighted average of λ_{1}^{j} and λ_{2}^{j}.
- Stationary condition

$$
\left|\lambda_{1}\right|<1, \quad\left|\lambda_{2}\right|<1
$$

- That is, ϕ in $\operatorname{AR}(1)$ is corresponding to λ_{1}, λ_{2} in $\operatorname{AR}(2)$.
- The eigenvalues determine the persistent of $\operatorname{AR}(2)$.
- We can apply the above condition to $\operatorname{AR}(p)$ i.e. the stationary condition of $\operatorname{AR}(p)$ is $\left|\lambda_{1}\right|<1,\left|\lambda_{2}\right|<1,\left|\lambda_{3}\right|<1, \cdots,\left|\lambda_{p}\right|<1$.

Stationarity Condition of $\operatorname{AR}(2)$: Eigenvalue [cont'd]

- Then, how to get eigenvalue of the matrix F ?
- We should derive the characteristic equation to obtain eigenvalues.
- And we can derive the characteristic equation easily from the autocorrelation function (without any complicated procedure).
- Autocorrelation function of $\operatorname{AR}(2)$

$$
\begin{aligned}
& \rho_{j}=\phi_{1} \rho_{j-1}+\phi_{2} \rho_{j-2} \\
\rightarrow & \rho_{j}-\phi_{1} \rho_{j-1}-\phi_{2} \rho_{j-2}=0
\end{aligned}
$$

- Characteristic equation of $\operatorname{AR}(2)$

$$
\lambda^{2}-\phi_{1} \lambda-\phi_{2}=0
$$

MA(q) Process

MA(1) Process

$$
Y_{t}=\mu+e_{t}+\theta e_{t-1}, \quad e_{t} \sim i i d N\left(0, \sigma^{2}\right)
$$

1. Expectation

$$
E\left(Y_{t}\right)=E(\mu)+E\left(e_{t}\right)+\theta E\left(e_{t-1}\right)=\mu
$$

- Note that we do not need any assumption of stationarity.

2. Variance

$$
\operatorname{Var}\left(Y_{t}\right)=\operatorname{Var}\left(e_{t}\right)+\theta^{2} \operatorname{Var}\left(e_{t-1}\right)=\left(1+\theta^{2}\right) \sigma^{2}
$$

- Again, we do not need any assumption of stationarity.

MA(1) Process [cont'd]

3. Auto-Covariance (Auto-Correlation)

- Additional assumption: $\mu=0$
- Auto-Covariance with time difference 1 :

$$
\begin{aligned}
\gamma_{1} & =\operatorname{Cov}\left(Y_{t}, Y_{t-1}\right)=E\left(Y_{t} Y_{t-1}\right) \\
& =E\left[\left(e_{t}+\theta e_{t-1}\right)\left(e_{t-1}+\theta e_{t-2}\right)\right] \\
& =E\left(e_{t} e_{t-1}+\theta e_{t} e_{t-2}+\theta e_{t-1}^{2}+\theta^{2} e_{t-1} e_{t-2}\right) \\
& =\theta E\left(e_{t-1}^{2}\right) \\
& =\theta \sigma^{2}
\end{aligned}
$$

MA(1) Process [cont'd]

- How about auto-covariance with time difference 2 :

$$
\begin{aligned}
\gamma_{2} & =\operatorname{Cov}\left(Y_{t}, Y_{t-2}\right)=E\left(Y_{t} Y_{t-2}\right) \\
& =E\left[\left(e_{t}+\theta e_{t-1}\right)\left(e_{t-2}+\theta e_{t-3}\right)\right] \\
& =E\left(e_{t} e_{t-2}+\theta e_{t} e_{t-3}+\theta e_{t-1} e_{t-2}+\theta^{2} e_{t-1} e_{t-3}\right) \\
& =0
\end{aligned}
$$

- Likewise, the auto-covariances with time difference greater than 2 are zero!
- Therefore, we know that

$$
\left\{\begin{array}{l}
\rho_{1} \neq 0 \\
\rho_{2}=\rho_{3}=\rho_{4}=\cdots=0
\end{array}\right.
$$

MA(1) Process [cont'd]

4. Impulse-response analysis

- MA(1) process is the Wold representation in itself.

$$
\begin{gathered}
\frac{\partial Y_{t+1}}{\partial e_{t}}=\frac{\partial Y_{t}}{\partial e_{t-1}}=\theta \\
\frac{\partial Y_{t+j}}{\partial e_{t}}=\frac{\partial Y_{t}}{\partial e_{t-j}}=0 \quad \text { for } j \geq 2
\end{gathered}
$$

4. Stationary condition

- MA(1) process is ALWAYS stationary without any condition!

MA(2) Process

$$
Y_{t}=\mu+e_{t}+\theta_{1} e_{t-1}+\theta e_{t-2}, \quad e_{t} \sim \operatorname{iid} N\left(0, \sigma^{2}\right)
$$

1. Expectation

$$
E\left(Y_{t}\right)=E(\mu)+E\left(e_{t}\right)+\theta_{1} E\left(e_{t-1}\right)+\theta_{2} E\left(e_{t-2}\right)=\mu
$$

2. Variance

$$
\operatorname{Var}\left(Y_{t}\right)=\operatorname{Var}\left(e_{t}\right)+\theta_{1}^{2} \operatorname{Var}\left(e_{t-1}\right)+\theta_{2}^{2} \operatorname{Var}\left(e_{t-2}\right)=\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \sigma^{2}
$$

MA(2) Process [cont'd]

3. Auto-Covariance (Auto-Correlation)

$$
\left\{\begin{array}{l}
\gamma_{1} \neq 0, \gamma_{2} \neq 0 \\
\gamma_{3}=\gamma_{4}=\gamma_{5}=\cdots=0
\end{array}\right.
$$

- We can extend our result to $\mathrm{MA}(q)$ model.
- Then, $\mathrm{MA}(q)$ process is always stationary?
- Yes! MA (q) process is stationary only if q is FINITE!

Stationary ARMA(p, q) Model

Stationary ARMA Model

- So far, we have learned AR model and MA model.
- We need the stationary condition for AR model, whereas MA model does not require any condition other than finite order.
- ARMA model is a mixed form of AR model and MA model $\rightarrow \mathrm{It}$ is intuitive that AR part determines the stationarity of ARMA model.
- For example, the stationary condition of $\operatorname{ARMA}(2,1)$ is equal to the stationary condition of $\operatorname{AR}(2)$ (or $\operatorname{ARMA}(2,0)$).

Lag Operator

- Lag Operator (L)

- In time series analysis, the lag operator L operates on an element of a time series to produce the previous element.
- For example,

$$
L Y_{t}=Y_{t-1}
$$

- The lag operator can be raised to arbitrary integer powers so that

$$
L^{k} Y_{t}=Y_{t-k}
$$

- For example,

$$
\begin{aligned}
& L^{2} Y_{t}=L L Y_{t}=L\left(L Y_{t}\right)=L Y_{t-1}=Y_{t-2} \\
& L^{3} Y_{t}=L L L Y_{t}=L L\left(L Y_{t}\right)=L\left(L Y_{t-1}\right)=L Y_{t-2}=Y_{t-3}
\end{aligned}
$$

AR Model in Lag Operator

- $\operatorname{AR}(1)$ model:

$$
\begin{aligned}
Y_{t} & =\phi Y_{t-1}+e_{t} \\
\rightarrow \quad Y_{t}-\phi L Y_{t} & =e_{t} \\
\rightarrow(1-\phi L) Y_{t} & =e_{t}
\end{aligned}
$$

- Define $\phi(L)=1-\phi L$ which is called polynomial equation in lag operator.
- $\operatorname{AR}(2)$ model:

$$
\begin{aligned}
Y_{t} & =\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+e_{t} \\
\rightarrow \quad Y_{t}-\phi_{1} L Y_{t}-\phi_{2} L^{2} Y_{t} & =e_{t} \\
\rightarrow \quad\left(1-\phi_{1} L-\phi_{2} L^{2}\right) Y_{t} & =e_{t} \\
\rightarrow \phi(L) Y_{t} & =e_{t} \text { where } \phi(L)=1-\phi_{1} L-\phi_{2} L^{2}
\end{aligned}
$$

Converting into Wold Representation

- Why is the lag operator useful?
- Note that our goal is converting a stationary process into a Wold representation.
- Method 1: Iterative substitution

$$
\begin{aligned}
Y_{t} & =\phi Y_{t-1}+e_{t} \\
& =\phi\left(\phi Y_{t-2}+e_{t-2}\right)+e_{t} \\
& =\phi^{2} Y_{t-2}+e_{t}+\phi e_{t-2} \\
& \vdots \\
& =e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\cdots
\end{aligned}
$$

- This method is not that difficult in the case of $\operatorname{AR}(1)$.
- But we already know that $\operatorname{AR}(2)$ or higher order $\operatorname{AR}(p)$ are complicated in using iteration.

Converting into Wold Representation [cont'd]

- Method 2: Lag operator

$$
\begin{aligned}
Y_{t} & =\phi Y_{t-1}+e_{t} \\
\rightarrow(1-\phi L) Y_{t} & =e_{t} \\
\rightarrow \quad Y_{t} & =\frac{1}{1-\phi L} e_{t}
\end{aligned}
$$

- The stationary condition of $\operatorname{AR}(1)$ is $|\phi|<1 \rightarrow$ If we treat it as $|\phi L|<1$:

$$
\frac{1}{1-\phi L}=1+\phi L+(\phi L)^{2}+(\phi L)^{3}+\cdots
$$

- Then, the last equation becomes:

$$
\begin{aligned}
Y_{t} & =\left(1+\phi L+(\phi L)^{2}+(\phi L)^{3}+\cdots\right) e_{t} \\
& =e_{t}+\phi e_{t-1}+\phi^{2} e_{t-2}+\phi^{3} e_{t-3}+\cdots
\end{aligned}
$$

Converting into Wold Representation [cont'd]

- We can generalize the method 2 with respect to $\operatorname{AR}(p)$:

$$
\begin{aligned}
Y_{t} & =\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\cdots+\phi_{p} Y_{t-p}+e_{t} \\
\rightarrow \phi(L) Y_{t} & =e_{t} \\
\rightarrow \quad Y_{t} & =\phi^{-1}(L) e_{t}
\end{aligned}
$$

ARMA Model in Lag Operator

- MA(1) model:

$$
\begin{aligned}
Y_{t} & =\mu+e_{t}+\theta e_{t-1} \\
\rightarrow \quad Y_{t} & =\mu+e_{t}+\theta L e_{t} \\
\rightarrow \quad Y_{t} & =\mu+(1+\theta L) e_{t} \\
\rightarrow \quad Y_{t} & =\mu+\theta(L) e_{t} \text { where } \theta(L)=1+\theta L
\end{aligned}
$$

- In general MA(q) model is $Y_{t}=\mu+\theta(L) e_{t}$
- Then, how about $\operatorname{ARMA}(p, q)$?

$$
\phi(L) Y_{t}=\mu+\theta(L) e_{t}
$$

- As we discussed, ARMA model can be always converted into the Wold representation.

Stationary Condition Revisited

- Another usefulness of lag operator is regarding stationary condition.
- Recall, in the case of $\operatorname{AR}(2)$ model, the autocorrelation function is:

$$
\rho_{j}=\phi_{1} \rho_{j-1}+\phi_{2} \rho_{j-2}
$$

- We can derive the characteristic equation directly from the above:

$$
\lambda^{2}-\phi_{1} \lambda-\phi_{2}=0
$$

- Then we can solve to λ and get two solutions λ_{1} and λ_{2}.
- The stationary condition of $\operatorname{AR}(2)$ is:

$$
\left|\lambda_{1}\right|<1, \quad\left|\lambda_{2}\right|<1
$$

Stationary Condition Revisited [contcd]

- Note that the polynomial equation in lag operator for $\operatorname{AR}(2)$ is:

$$
\phi(L)=1-\phi_{1} L-\phi_{2} L^{2}
$$

- Suppose that we solve $\phi(L)=0$ to L. What are the solutions?
- Substitute L with $1 / \lambda$, then

$$
\begin{aligned}
1-\phi_{1}\left(\frac{1}{\lambda}\right)-\phi_{2}\left(\frac{1}{\lambda}\right)^{2} & =0 \\
\rightarrow \lambda^{2}-\phi_{1} \lambda-\phi_{2} & =0
\end{aligned}
$$

- That is, the solutions of $\phi(L)=0$ is the reciprocal of the solutions of characteristic equations.

$$
L_{1}=\frac{1}{\lambda_{1}}, \quad L_{2}=\frac{1}{\lambda_{2}}
$$

Stationary Condition Revisited [cont'd]

- Therefore, we can rewrite the stationary condition by:

$$
\left|\lambda_{1}\right|<1,\left|\lambda_{2}\right|<1 \quad \Longleftrightarrow\left|L_{1}\right|>1,\left|L_{2}\right|>1
$$

- Also we can generalize the above result onto $\operatorname{ARMA}(p, q)$!

Box-Jenkin's Approach

Partial Autocorrelation Function

- Question: How to identify the order p and q for ARMA model?
- In case of MA model, we can easily identify q from autocorrelation function.
- However, AR model as well as ARMA model is difficult to identify the order just from the autocorrelation function.
- Therefore, partial autocorrelation is suggested as a supplementary method.
- For example, suppose that we have a time series data Y_{t} that $\operatorname{AR}(1)$ model explains best.
- But we don't know $\operatorname{AR}(1)$ model is the best one for Y_{t} ex ante.
- So we consider all $\operatorname{AR}(p)$ models as candidates, and then test the significance of p.

Partial Autocorrelation Function [cont dd]

$$
\begin{aligned}
& \operatorname{AR}(1): Y_{t}=\phi_{11} Y_{t-1}+e_{t} \\
& \operatorname{AR}(2): Y_{t}=\phi_{21} Y_{t-1}+\phi_{22} Y_{t-2}+e_{t} \\
& \operatorname{AR}(3): Y_{t}=\phi_{31} Y_{t-1}+\phi_{32} Y_{t-2}+\phi_{32} Y_{t-3}+e_{t} \\
& \operatorname{AR}(\mathrm{j}): Y_{t}=\phi_{j 1} Y_{t-1}+\phi_{j 2} Y_{t-2}+\cdots+\phi_{j j} Y_{t-j}+e_{t}
\end{aligned}
$$

- Estimate each model and get $\hat{\phi}_{11}, \hat{\phi}_{22}, \hat{\phi}_{33}, \cdots, \hat{\phi}_{j j}, \cdots$.
- $\hat{\phi}_{11}, \hat{\phi}_{22}, \hat{\phi}_{33}, \cdots, \hat{\phi}_{j j}, \cdots$ are called partial correlations.
- Since the data is explained by $\operatorname{AR}(1)$ best, $\hat{\phi}_{11}$ will be significant and the others will not be significant.
- In general, if we find significant $\hat{\phi}_{j j}$, the model that explains data best would be $\operatorname{AR}(j)$.

Box-Jenkin's Approach to ARMA

- Question: How to identify the order p and q for ARMA model?
- [Step 1] Given data, draw the autocorrelation function and the partial autocorrelation function.
- [Step 2] Based on the ACF and the PACF, select the candidates of combination of p and q for $\operatorname{ARMA}(p, q)$.
- [Step 3] Estimate the coefficients of each candidate.
- [Step 4] Diagnostic test: White noise test
- If the residual of a model does not pass the white noise test, the model will not be a good one.
- [Step 5] Select the best model using AIC (Akaike Information Criterion) or BSC (Bayes-Schwartz Criterion)
- We will choose the model whose score is lower.

