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Stochastic Process



Introduction: Cross-Sectional Data vs. Time Series Data

Cross-sectional data: data on one or more variables collected at the same
point in time

Population and housing census by the Statistics Korea every 5 years

Consumer survey index by Bank of Korea every quarter

Opinion polls by the Gallup Korea

Time series data: a set of observations on the values that a variable takes
at different times

Daily data: stock prices, weather reports

Monthly data: unemployment rate, CPI (Consumer Price Index)

Annual data: GDP
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Stochastic Process

Stochastic process: a collection of random variables ordered in time

Y1, Y2, Y3, Y4, · · · , YT

Keep in mind that each of Y ’s is a random variable!

For example, Yt is GDP of the year t. (Y1 = GDP of 1960,
Y2 = GDP of 1961, · · · )

The term “stochastic” comes from the Greek word “stokhos”.
Stokhos means a bull’s-eye (or a center of a target).
If you have ever thrown darts on a dart board with the aim of hitting the
bull’s-eye, how often did you hit the bull’s-eye?
Out of a hundred darts you may be lucky to hit the bull’s-eye only a few
times. At other times the darts will be spread randomly around the bull’s-eye.
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Stochastic Process [cont’d]

Going back to the example of GDP:

Yt is GDP of the year t. (Y1 = GDP of 1960, Y2 = GDP of 1961, · · · )

We know that the GDP of 2019 was 1,919 trillion won.

Theoretically, the GDP figure for 2019 could have been any number,
depending on the economic and political circumstances. → The figure of
1,919 trillion won is a particular realization of all such possibilities.

In summary, we can say that GDP is a stochastic process, and the actual
values we observe for the sample period are particular realization of the
process.

Advanced Econometrics (Fall 2022) Stochastic Process 4 / 33



Stochastic Process [cont’d]

The distinction between the stochastic process and its realization is akin to
the distinction between population and sample in cross-sectional data.

However the critical difference between “realization of stochastic process”
and “sample of population” is whether we can draw it once again or not.

We cannot observe another possibility of Yt except the actual realization
(unless we have a time machine).
That is, we do not have any information about Yt other than the realization.

We want to analyze with a stochastic process (Yt for t = 1, 2, · · · ,T ), but
how if we observe only one realization for each random variable?

Suppose we want to forecast YT+1 (out-of-sample) → We need to know
E (Yt ) and Var (Yt ).
But the expectations and variances for each Yt can be different!
We can’t get anything from time series data unless we assume about Yt .
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Stationary Stochastic Process

“A stochastic process is said to be stationary if its mean and variance are
constant over time and the value of the covariance between two time
periods depends only on the distance or gap or lag between two time
periods and not the actual time at which the covariance is computed.” -
Gujarati and Porter, Basic Econometrics, 5th edition, McGraw-Hill

Stationarity: The time series Yt is said to be stationary if

E (Yt) = µ, ∀t
Var (Yt) = σ2, ∀t

Cov (Yt ,Yt+k ) = γk , ∀t, k

The time series satisfying the above condition is known as a weakly stationary
process.
It is also known as a covariance stationary process, or a second-order
stationary process, or a wide-sense stationary process.
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Stationary Stochastic Process

If a time series is stationary, its mean, variance, and autocovariance remain
the same no matter what point we measure them.

That is, the first and second moments of a time series are time invariant!

Such a time series will tend to return to its mean (called mean reversion).

Fluctuations around the mean (measured by the variance) will have a broadly
constant amplitude.

The speed of mean reversion depends on the autocovariances; it is quick if the
autocovariances are small and slow when they are large.

If a time series is not stationary in the sense we defined, it is called a
non-stationary time series.

In other words, a non-stationary process will have a time-varying mean or a
time-varying variance or both.
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Stationary Stochastic Process [cont’d]

(optional) A time series is strictly stationary if all the moments of its
probability distribution are invariant over time.

However, if the stationary process is normal, the weakly stationary process is
also strictly stationary.

Why? The normal stochastic process is fully specified by its first and second
moments, the mean and the variance.

In that sense, again, the central limit theorem (CLT) is quite important!

Advanced Econometrics (Fall 2022) Stochastic Process 8 / 33



Non-Stationarity



Non-Stationary Stochastic Process: Random Walk

Classical example of non-stationary process is a random walk.

It is often said that asset prices such as stock prices or exchange rates follow a
random walk.

We distinguish two types of random walks: (i) random walk without drift, (ii)
random walk with drift

Random walk without drift

Yt = Yt−1 + et (1)

et is a (Gaussian) white noise error term with mean 0 and variance σ2:
et ∼ iidN(0, σ2)

The value of Y at time t is equal to its value at time t − 1 plus a random
shock.
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Random Walk without Drift [cont’d]

We can write:
Y1 = Y0 + e1

Y2 = Y1 + e2 = Y0 + e1 + e2

Y3 = Y2 + e3 = Yo + e1 + e2 + e3

In general, we have
Yt = Y0 + Σet

Therefore,

E (Yt) = E (Y0 + Σet) = Y0

Var (Yt) = Var (Y0 + Σet) = tσ2

The mean of Y is equal to its initial value which is constant.
But as t increases, its variance indefinitely increases. → A random walk
without drift is non-stationary.
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Random Walk without Drift [cont’d]

An interesting feature of the random walk is the persistence of random
shocks.

Yt is initial Y0 plus the sum of random shocks.
As a result, the impact of a particular shock does not die away.
This is why random walk is said to have an infinite memory.

Interestingly, if we write the equation (1) as

Yt − Yt−1 = et

→ 4Yt = et

4 is the first difference operator.
While Yt is nonstationary, 4Yt is stationary!
That is, the first differences of a random walk time series are stationary.
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Random Walk with Drift

Let’s modify the equation (1) as follows:

Yt = δ + Yt−1 + et (2)

δ is known as the drift parameter.

We can show that

E (Yt) = Y0 + tδ

Var (Yt) = tσ2

For a random walk with drift, the mean as well as the variance increase over
time, which violates the conditions of stationarity.
In short, a random walk, with or without drift, is a non-stationary stochastic
process.
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Non-Stationary Stochastic Process: Random Walk

Random walk without drift (DGP: Yt = Y0 + et , Y0 = 0, et ∼ N (0, 1))
*source: Gujarati Figure 21.3
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Non-Stationary Stochastic Process: Random Walk [cont’d]

Random walk with drift (DGP: Yt = δ +Y0 + et , δ = 2, Y0 = 0, et ∼ N (0, 1))
*source: Gujarati Figure 21.4
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Unit Root Process

The random walk model is an example of what is known as a unit root
process.

Let us write the random walk model (Equation 1) as:

Yt = ρYt−1 + et

This model resembles the first-order autoregressive model (that we discussed
in the class of autocorrelation).
If −1 < ρ < 1, the process has zero mean, homoskedastic variance, and the
covariance only depends on the distance of two time periods. → Stationarity!
If ρ = 1, the process becomes a random walk. → Non-stationarity!

Therefore, if ρ = 1, we face the unit root problem.
The name “unit root” is due to the fact that ρ = 1.
Thus the terms “non-stationarity”, “random walk”, “unit root” (and
“stochastic trend” which we will learn soon) can be treated synonymously.
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Unit Root Test

In practice, then, it is important to find out if a time series possesses a unit
root.

In this class, we will introduce the idea of unit root test (which is widely
popular test of stationarity).

We will revisit the unit root test later (after learning more about time-series
analysis).

We start with:
Yt = ρYt−1 + et

→ Yt − Yt−1 = ρYt−1 − Yt−1 + et

→ 4Yt = (ρ− 1)Yt−1 + et

Let’s define δ = ρ− 1, then:

4Yt = δYt−1 + et
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Unit Root Test [cont’d]

We estimate the above equation, and test the null hypothesis δ = 0 against
the alternative δ < 0 .

If ρ = 1 (unit root), δ = 0.
If −1 < ρ < 1, then δ is negative.

If we reject the null hypothesis, then we can conclude the process is
stationary.

If we do not reject the null, then we should strongly suspect there is a unit
root (or, the process is non-stationary).

We will see an example of the practical unit root test in the Gretl session.
Augmented Dicky-Fuller test (ADF test)
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Deterministic and Stochastic Trend

As we discussed before, we are interested in a stationary process, but not a
non-stationary process.

We can make a non-stationary stochastic process to a stationary process.

The changing procedure is related to whether the trend observed in the time
series is deterministic or stochastic.

Deterministic trend: if the trend in a time series is a deterministic function
of time, such as t, t2, etc., we call it a deterministic trend.

Stochastic trend: if the trend is not predictable, we call it a stochastic
trend.
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Deterministic and Stochastic Trend [cont’d]

DGP: Yt = 0.5+ Yt−1 + et , Yt = 0.5t + et
*source: Gujarati Figure 21.5
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DSP and TSP: Pure Random Walk

Yt = β1 + β2t + β3Yt−1 + et

Pure random walk (β1 = 0, β2 = 0, β3 = 1)

Yt = Yt−1 + et

This process is a random walk without drift and is therefore non-stationary.

But note that, as 4Yt = et , it becomes stationary.

Hence, a pure random walk is a difference stationary process (DSP).
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DSP and TSP: Random Walk with Drift

Random walk with drift (β1 6= 0, β2 = 0, β3 = 1)

Yt = β1 + Yt−1 + et

This process is a random walk with drift and is therefore non-stationary.

If we write it as

4Yt = β1 + et

this means Yt exhibit a positive (β1 > 0) or negative (β1 < 0) trend.

Such a trend is called a stochastic trend.

A random walk with drift is a DSP because the non-stationarity in Yt can be
eliminated by taking first differences.
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DSP and TSP: Deterministic Trend

Deterministic trend (β1 6= 0, β2 6= 0, β3 = 0)

Yt = β1 + β2t + et

This process is called a trend stationary process (TSP).

Although the mean of Yt is β1 + β2t, which is not constant, its variance
(= σ2) is constant.

Note that this process does not have a unit root, so this process is called as
“non-stationary process without a unit root”.

Once the value of β1 and β2 are known, the mean can be forecast perfectly.

Therefore, if we subtract the mean of Yt form Yt , the resulting series will be
stationary → “trend stationary”
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DSP and TSP: Random walk with drift and deterministic trend

Random walk with drift and deterministic trend (β1 6= 0, β2 6= 0,
β3 = 1)

Yt = β1 + β2t + Yt−1 + et

We write the above equation as

4Yt = β1 + β2t + et

this means Yt should be differenced and we should remove the deterministic
trend as well.

If |β3| < 1, the process is just a TSP.
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Underdifferencing and Overdifferencing

It is very important to apply the right sort of stationarity transform to the
data, if they are not stationary!

If a non-stationary time series is DSP but we treat it as TSP, this is called
underdifferencing.

If a non-stationary time series is TSP but we treat it as DSP, this is called
overdifferencing.

If we confuse a TSP series with a DSP series or vice versa, our goal (to
obtain the stationary process) would not be achieved.

(cf) It is known that most financial market prices (stock prices, interest rates,
etc.) are non-stationary because of stochastic rather than deterministic trend.
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Remark: TSP vs. DSP

Both TSP and DSP are non-stationary process.
TSP: The mean trend is deterministic.
DSP: The mean trend is stochastic.

The distinction between a deterministic and stochastic trend has important
implications for the long-term behavior of a process.

Time series with a deterministic trend (so, TSP) always revert to the trend
in the long run (mean-reverting). That is, the effect of shocks are eventually
eliminated.
Time series with a stochastic trend (so, DSP) never recover from shocks to
the system. That is, the effect of shocks are permanent.

As a result, if the non-stationary process is TSP, it is not a big deal.

In that sense, when we say a time series is a non-stationary process, it usually
means that the process is DSP.
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Integrated Stochastic Process

Time series that can be made stationary by differencing (i .e. DSP) are often
called “integrated process”.

For example, a random walk is non-stationary process and its first difference
is stationary.

When a time series has to be differenced once to make it stationary, we say
that the series is integrated of order 1.

That is, the random walk without drift is integrated process of order 1.

Similarly, if a time series has to be differenced twice (i .e. take the first
difference of the first difference) to make it stationary, we call such a time
series integrated of order 2.

For example, if Yt is integrated of order 2, 42Yt = 44Yt = 4Yt −4Yt−1
= (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2 will become
stationary.

Note that 42Yt 6= Yt − Yt−2.
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Integrated Stochastic Process [cont’d]

In general, if a time series has to be differenced d times to make it
stationary, that time series is said to be integrated of order d .

A time series Yt integrated of order d is denoted as Yt ∼ I (d).

If a time series is stationary to begin with (i .e. it does not require any
differencing), it is said to be integrated of order zero, denoted by Yt ∼ I (0)

Therefore, we use the term “stationary time series” and “time series integrated
of order zero” to mean the same thing.

Most economic time series are generally I (1).
That is, they generally become stationary only after taking their first
differences.
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Properties of Integrated Series

If Xt ∼ I (d), then Zt = a+ bXt ∼ I (d), where a and b are constants.
A linear combination of an I (d) series is also I (d).
If Xt ∼ I (0), then Zt = a+ bXt ∼ I (0).

If Xt ∼ I (0) and Yt ∼ I (1), then Zt = Xt + Yt ∼ I (1).
A linear combination or sum of stationary and non-stationary time series is
non-stationary.

If Xt ∼ I (d1) and Yt ∼ I (d2), then Zt = aXt + bYt ∼ I (d2), where
d1 < d2.

If Xt ∼ I (d) and Yt ∼ I (d), then Zt = aXt + bYt ∼ I (d∗).
d∗ is generally equal to d .
But in some cases, d∗ < d → Cointegration
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Properties of Integrated Series [cont’d]

We must pay careful attention in combining two or more time series that are
integrated of different order. .

(optional) To see why this is important, consider the two-variable simple
regression model: Yt = β1 + β2Xt + et

Under the classical assumptions, we know that

β̂2 =
∑ xtyt

∑ x2
t

Suppose that Yt is I (0) and Xt is I (1).
Since Xt is non-stationary, its variance (E (Xt − X̄ )

2) will increase indefinitely.
Note that 1

n ∑ (Xt − X̄ )
2 is the sample variance of Xt , which is the

denominator of β̂2.
Thus, huge denominator dominates the numerator, so β̂2 will converge to to
zero in large samples.
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Wold Representation

Wold decomposition theorem: In general, any stationary stochastic
process can be expressed as the sum of deterministic component and
stochastic component.

Wold representation

Yt = µ + et + ψ1et−1 + ψ2et−2 + · · ·

Stochastic component: a linear combination of lags of a white noise process.

Deterministic component: uncorrelated with the stochastic component, and
100% predictable

Deterministic component need not necessarily be linear.
For example, it could be sine wave (nonlinear but 100% predictable).
However, we will focus on the simple constant deterministic component µ from
now on.
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Key Assumptions of Wold Representation

Assumption 1
et ∼ iidN

(
0, σ2)

et means a shock or a prediction error.
By this assumption, E (Yt ) = µ.

Assumption 2
∞

∑
i=0

ψ2
i < ∞,whereψ0 = 1

Note that the variance of Yt is:

Var (Yt) = σ2 + ψ2
1σ2 + ψ2

2σ2 + · · · = σ2
∞

∑
i=0

ψ2
i

Therefore, Var (Yt ) is finite (and time-invariant).
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Wold Representation: Important Remark

Wold representation is the unique linear representation!

In other words, ψ1, ψ2, ψ3, · · · are unique.

If we find the unique ψ’s of the Wold representation, we can predict the
impact of new (unexpected) shock on Yt .

Impulse-Response

∂Yt
∂et−1

= ψ1,
∂Yt

∂et−2
= ψ2,

∂Yt
∂et−3

= ψ3, · · ·

Under the stationary condition, we can forecast the effect of et on the future
value of Yt .

∂Yt+1
∂et

= ψ1,
∂Yt+2

∂et
= ψ2,

∂Yt+3
∂et

= ψ3, · · ·
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Wold Representation: Important Remark [cont’d]

Recall that ∑∞
i=0 ψ2

i < ∞ ⇐⇒ limi→∞ ψi = 0

Therefore, we can say that the further a shock is, the weaker the effect of the
shock is.

Challege Can we estimate the all parameters of the Wold representation?

Parameters in Wold representation: µ, σ2, ψ1, ψ2, ψ3, · · · → (∞ + 2)
parameters

Unfortunately, our time series observations are finite.

Therefore, we need to approximate the Wold representation (or stationary
process) into something!

=⇒ ARMA model
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