Multiple Regression

Class 8

Wonmun Shin
(wonmun.shin@sejong.ac.kr)
Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture notes.

Introduction to Multiple Regression

General Model

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}+e_{i}
$$

- There may be more than one explanatory variable that may influence the dependent variable.
- Examples
- Y : Consumption / X : Income, Wealth, Family size, Age, \cdots
- Y : Aggregate money demand / X : aggregate income, interest rate, \cdots
- Y : Demand for a commodity / X: own price, other commodity prices, income

Multiple Linear Regression Model

Meaning of Coefficient

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}+e_{i}
$$

- β_{2} : the change in the mean value of Y per unit change in X_{2}, holding the value of X_{3}, \cdots, X_{K} constant.
\Longrightarrow Regression coefficient on the independent variable: partial effect of the independent variable on the mean of the dependent variable when other independent variables included in the model are held constant.

$$
\beta_{2}=\frac{\partial Y}{\partial X_{2}}, \cdots, \beta_{K}=\frac{\partial Y}{\partial X_{K}}
$$

Classical Assumptions

- (B1) $X_{2 i}, \cdots, X_{K i}:$ non-random
-(B2) $E\left(e_{i}\right)=0$
- (B3) Var $\left(e_{i}\right)=\sigma^{2} \quad$ Homoskedasticity
- (B4) $\operatorname{Cov}\left(e_{i}, e_{j}\right)=0$ for $i \neq j \quad$ No Autocorrelation
- (B5) No exact linear relationship in regressors No (Perfect) Multicollinearity

Classical Assumptions [cont'd]

Explanation for (B5)

- Consider the three variable model: $Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i}$
- Suppose $X_{2 i}=3 X_{3 i}$, which means there is exact linear relationship between $X_{2 i}$ and $X_{3 i}$.
- Then,

$$
\begin{aligned}
Y_{i} & =\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i} \\
& =\beta_{1}+\beta_{2}\left(3 X_{3 i}\right)+\beta_{3} X_{3 i}+e_{i} \\
& =\beta_{1}+\left(3 \beta_{2}+\beta_{3}\right) X_{3 i}+e_{i}
\end{aligned}
$$

- Now, we cannot estimate either β_{2} and β_{3} separately!!
- We can estimate only the linear combination of two coefficients, i.e. $3 \widehat{\beta_{2}+\beta_{3}}$.
- This problem is usually called as Identification Problem.

OLS Estimation in Multiple Regression Model

Three-Variable Regression Model

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i}
$$

- To find the OLS estimators, let's first write the (stochastic) SRF corresponding to the above equation:

$$
Y_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{2 i}+\hat{\beta}_{3} X_{3 i}+\hat{e}_{i}
$$

where \hat{e}_{i} is the residual term (the sample counterpart of the error term e_{i})

- The OLS procedure consists of choosing $\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}$ so that $\sum \hat{e}_{i}^{2}$ (RSS, residual sum of squares) is as small as possible:

$$
\min \sum \hat{e}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{2 i}-\hat{\beta}_{3} X_{3 i}\right)^{2}
$$

Three-Variable Regression Model [conted]

- From the FOCs, we can derive the following normal equations:

$$
\begin{aligned}
\sum Y_{i} & =n \hat{\beta}_{1}+\hat{\beta}_{2} \sum X_{2 i}+\hat{\beta}_{3} \sum x_{3 i} \\
\sum Y_{i} X_{2 i} & =\hat{\beta}_{1} \sum X_{2 i}+\hat{\beta}_{2} \sum x_{2 i}^{2}+\hat{\beta}_{3} \sum x_{2 i} x_{3 i} \\
\sum Y_{i} X_{3 i} & =\hat{\beta}_{1} \sum X_{3 i}+\hat{\beta}_{2} \sum x_{2 i} X_{3 i}+\hat{\beta}_{3} \sum x_{3 i}^{2}
\end{aligned}
$$

- We can obtain the OLS estimators:

$$
\begin{aligned}
& \hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{x}_{2}-\hat{\beta}_{3} \bar{x}_{3} \\
& \hat{\beta}_{2}=\frac{\sum x_{2 i} y_{i} \sum x_{3 i}^{2}-\sum x_{3 i} y_{i} \sum x_{2 i} x_{3 i}}{\sum x_{2 i}^{2} \sum x_{3 i}^{2}-\left(\sum x_{2 i} x_{3 i}\right)^{2}} \\
& \hat{\beta}_{3}=\frac{\sum x_{3 i} y_{i} \sum x_{2 i}^{2}-\sum x_{2 i} y_{i} \sum x_{2 i} x_{3 i}}{\sum x_{2 i}^{2} \sum x_{3 i}^{2}-\left(\sum x_{2 i} x_{3 i}\right)^{2}}
\end{aligned}
$$

Three-Variable Regression Model [conted]

- Note: Equations for $\hat{\beta}_{2}$ and $\hat{\beta}_{3}$
- Two equations are symmetrical in nature because one can be obtained from the other by interchanging the roles of $X_{2 i}$ and $X_{3 i}$.
- The denominators of two equations are identical.
- Note: The three-variable case is a natural extension of the two-variable case.
- Also, we can derive the formulae for variances (+ covariances) of the OLS estimators .
- How about the OLS estimator of σ^{2} ?

$$
\hat{\sigma}^{2}=\frac{\sum \hat{e}_{i}^{2}}{n-3}
$$

General Multiple Regression Model

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}+e_{i}
$$

- To find the OLS estimators, let's first write the (stochastic) SRF corresponding to the above equation:

$$
Y_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{2 i}+\cdots+\hat{\beta}_{K} X_{K i}+\hat{e}_{i}
$$

where \hat{e}_{i} is the residual term (the sample counterpart of the error term e_{i})

- The OLS procedure consists of choosing $\hat{\beta}_{1}, \hat{\beta}_{2}, \cdots, \hat{\beta}_{K}$ so that $\sum \hat{e}_{i}^{2}$ (RSS, residual sum or squares) is as small as possible:

$$
\min \sum \hat{e}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{2 i}-\cdots-\hat{\beta}_{K} X_{K i}\right)^{2}
$$

General Multiple Regression Model [contd]

- We will get K first order conditions and should solve the system of equations! \Longrightarrow Complicated!
- No need to memorize all formulae for OLS in a multivariate regression.
- They can be obtained by any statistical packages such as Gretl.
- In a matrix notation, there is a simple formula (which is beyond this course).
- We can write $Y=X \beta+e$ where Y is $(n \times 1)$ vector, X is $(n \times K)$ matrix, β is ($K \times 1$) vector, and e is $(n \times 1)$ vector.
- Minimize $\hat{e}^{\prime} \hat{e}=(Y-X \hat{\beta})^{\prime}(Y-X \hat{\beta}) \Rightarrow \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$
- Consider the classical assumptions in the matrix form. For example, $\operatorname{Var}(e)=\sigma^{2} I_{n}$
- We can show that $\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} e \Rightarrow \operatorname{Var}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}$

General Multiple Regression Model [cont'd]

- The estimated regression will be

$$
Y_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{2 i}+\cdots+\hat{\beta}_{K} X_{K i}+\hat{e}_{i}
$$

- OLS estimator of σ^{2} :

$$
\hat{\sigma}^{2}=\frac{\sum \hat{e}_{i}^{2}}{n-K}
$$

where K is the number of regressors (including constant) in the multiple regression.

General Multiple Regression Model [contd]

- Most properties of the OLS estimators obtained in the simple regression will hold in the same way in multiple regression model.
- Unbiasedness of OLS estimators
- Gauss-Markov Theorem: Under the assumptions (B2) - (B5), the OLS estimators are BLUE (Best Linear Unbiased estimators).
- Variance of OLS estimators
- Same as simple regression case: $\sigma^{2} \uparrow \rightarrow \operatorname{Var}\left(\hat{\beta}_{k}\right) \uparrow / / n,\left(X_{k i}-\bar{X}_{k}\right) \uparrow \rightarrow$ $\operatorname{Var}\left(\hat{\beta}_{k}\right) \downarrow$
- The larger the correlation between the regressors, the larger variance of OLS estimators (Multicollinearity problem).

