Multiple Regression

Class 8

Wonmun Shin (wonmun.shin@sejong.ac.kr)

Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture notes.

æ

Introduction to Multiple Regression

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

$$Y_i = \beta_1 + \beta_2 X_{2i} + \cdots + \beta_K X_{Ki} + e_i$$

- There may be more than one explanatory variable that may influence the dependent variable.
- Examples
 - Y: Consumption / X: Income, Wealth, Family size, Age, · · ·
 - Y: Aggregate money demand / X: aggregate income, interest rate, · · ·
 - Y: Demand for a commodity / X: own price, other commodity prices, income ...

3

Multiple Linear Regression Model

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

$Y_i = \beta_1 + \beta_2 X_{2i} + \cdots + \beta_K X_{Ki} + e_i$

• β_2 : the change in the mean value of Y per unit change in X_2 , holding the value of X_3, \dots, X_K constant.

 \implies Regression coefficient on the independent variable: **partial effect** of the independent variable on the mean of the dependent variable when other independent variables included in the model are held constant.

$$\beta_2 = \frac{\partial Y}{\partial X_2}, \cdots, \beta_K = \frac{\partial Y}{\partial X_K}$$

- (B1) X_{2i}, · · · , X_{Ki}: non-random
- **(B2)** $E(e_i) = 0$
- **(B3)** $Var(e_i) = \sigma^2$ Homoskedasticity
- (B4) $Cov(e_i, e_j) = 0$ for $i \neq j$ No Autocorrelation
- (B5) No exact linear relationship in regressors No (Perfect) Multicollinearity

Explanation for (B5)

- Consider the three variable model: $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + e_i$
- Suppose $X_{2i} = 3X_{3i}$, which means there is exact linear relationship between X_{2i} and X_{3i} .

• Then,

$$Y_{i} = \beta_{1} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + e_{i}$$

= $\beta_{1} + \beta_{2}(3X_{3i}) + \beta_{3}X_{3i} + e_{i}$
= $\beta_{1} + (3\beta_{2} + \beta_{3})X_{3i} + e_{i}$

- Now, we cannot estimate either β_2 and β_3 separately!!
 - We can estimate only the linear combination of two coefficients, *i.e.* $3\bar{\beta}_2 + \bar{\beta}_3$.
 - This problem is usually called as Identification Problem.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

OLS Estimation in Multiple Regression Model

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + e_i$$

• To find the OLS estimators, let's first write the (stochastic) SRF corresponding to the above equation:

$$Y_{i} = \hat{\beta}_{1} + \hat{\beta}_{2}X_{2i} + \hat{\beta}_{3}X_{3i} + \hat{\mathbf{e}}_{i}$$

where \hat{e}_i is the residual term (the sample counterpart of the error term e_i)

• The OLS procedure consists of choosing $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$ so that $\sum \hat{e}_i^2$ (RSS, residual sum of squares) is as small as possible:

$$\min \sum \hat{e}_{i}^{2} = \sum \left(Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2} X_{2i} - \hat{\beta}_{3} X_{3i} \right)^{2}$$

Three-Variable Regression Model [cont'd]

• From the FOCs, we can derive the following normal equations:

$$\sum Y_{i} = n\hat{\beta}_{1} + \hat{\beta}_{2} \sum X_{2i} + \hat{\beta}_{3} \sum X_{3i}$$

$$\sum Y_{i}X_{2i} = \hat{\beta}_{1} \sum X_{2i} + \hat{\beta}_{2} \sum X_{2i}^{2} + \hat{\beta}_{3} \sum X_{2i}X_{3i}$$

$$\sum Y_{i}X_{3i} = \hat{\beta}_{1} \sum X_{3i} + \hat{\beta}_{2} \sum X_{2i}X_{3i} + \hat{\beta}_{3} \sum X_{3i}^{2}$$

• We can obtain the OLS estimators:

$$\begin{split} \hat{\beta}_{1} &= \bar{Y} - \hat{\beta}_{2}\bar{X}_{2} - \hat{\beta}_{3}\bar{X}_{3} \\ \hat{\beta}_{2} &= \frac{\sum x_{2i}y_{i}\sum x_{3i}^{2} - \sum x_{3i}y_{i}\sum x_{2i}x_{3i}}{\sum x_{2i}^{2}\sum x_{3i}^{2} - (\sum x_{2i}x_{3i})^{2}} \\ \hat{\beta}_{3} &= \frac{\sum x_{3i}y_{i}\sum x_{2i}^{2} - \sum x_{2i}y_{i}\sum x_{2i}x_{3i}}{\sum x_{2i}^{2}\sum x_{3i}^{2} - (\sum x_{2i}x_{3i})^{2}} \end{split}$$

æ

- <u>Note</u>: Equations for $\hat{\beta}_2$ and $\hat{\beta}_3$
 - Two equations are symmetrical in nature because one can be obtained from the other by interchanging the roles of X_{2i} and X_{3i} .
 - The denominators of two equations are identical.
- Note: The three-variable case is a natural extension of the two-variable case.
- Also, we can derive the formulae for variances (+ covariances) of the OLS estimators .
- How about the OLS estimator of σ^2 ?

$$\hat{\sigma^2} = \frac{\sum \hat{e}_i^2}{n-3}$$

イロン イ団 とく ヨン イヨン

$$Y_i = \beta_1 + \beta_2 X_{2i} + \cdots + \beta_K X_{Ki} + e_i$$

• To find the OLS estimators, let's first write the (stochastic) SRF corresponding to the above equation:

$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_K X_{Ki} + \hat{\mathbf{e}}_i$$

where \hat{e}_i is the residual term (the sample counterpart of the error term e_i)

• The OLS procedure consists of choosing $\hat{\beta}_1$, $\hat{\beta}_2$, \cdots , $\hat{\beta}_K$ so that $\sum \hat{e}_i^2$ (RSS, residual sum or squares) is as small as possible:

$$\min \sum \hat{\mathbf{e}}_i^2 = \sum \left(Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_{2i} - \dots - \hat{\beta}_K X_{Ki} \right)^2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General Multiple Regression Model [cont'd]

- We will get K first order conditions and should solve the system of equations! \implies Complicated!
- No need to memorize all formulae for OLS in a multivariate regression.
 - They can be obtained by any statistical packages such as Gretl.
 - In a matrix notation, there is a simple formula (which is beyond this course).
 - We can write $Y = X\beta + e$ where Y is $(n \times 1)$ vector, X is $(n \times K)$ matrix, β is $(K \times 1)$ vector, and e is $(n \times 1)$ vector.
 - Minimize $\hat{e}'\hat{e} = \left(Y X\hat{\beta}\right)'\left(Y X\hat{\beta}\right) \Rightarrow \hat{\beta} = \left(X'X\right)^{-1}X'Y$
 - Consider the classical assumptions in the matrix form. For example, $V\!ar\left(e\right)=\sigma^{2}\textit{I}_{n}$
 - We can show that $\hat{\beta} = \beta + (X'X)^{-1} X' e \Rightarrow Var(\hat{\beta}) = \sigma^2 (X'X)^{-1}$

• The estimated regression will be

$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_K X_{Ki} + \hat{\mathbf{e}}_i$$

• OLS estimator of σ^2 :

$$\hat{\sigma^2} = \frac{\sum \hat{e}_i^2}{n - K}$$

where K is the number of regressors (including constant) in the multiple regression.

イロン イ団 とく ヨン イヨン

- Most properties of the OLS estimators obtained in the simple regression will hold in the same way in multiple regression model.
 - Unbiasedness of OLS estimators
 - Gauss-Markov Theorem: Under the assumptions (B2) (B5), the OLS estimators are BLUE (Best Linear Unbiased estimators).
 - Variance of OLS estimators
 - Same as simple regression case: $\sigma^2 \uparrow \rightarrow Var(\hat{\beta}_k) \uparrow // n, (X_{ki} \bar{X}_k) \uparrow \rightarrow Var(\hat{\beta}_k) \downarrow$
 - The larger the correlation between the regressors, the larger variance of OLS estimators (Multicollinearity problem).

<ロ> <四> <四> <四> <三</p>