Inference in Simple Regression 2

Class 7

Wonmun Shin
(wonmun.shin@sejong.ac.kr)
Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture notes.

Coefficient of Determination

How Good Is the Fitted Regression Line?

- So far, we were concerned with the problem of estimating regression coefficients.
- We now consider the goodness of fit of the fitted regression line to data.
- That is, we will find out how "well" the sample regression line $\left(\hat{Y}_{i}\right)$ fits the data $\left(Y_{i}\right)$.
- Question: Is the variation in the dependent variable largely explained by the variation in the independent variable ?
- If yes, we have a "good fit"!!

How Good Is the Fitted Regression Line? [cont'd]

$$
\begin{aligned}
Y_{i} & =\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}+\hat{e}_{i} \\
& =\hat{Y}_{i}+\hat{e}_{i} \\
\Rightarrow \quad Y_{i}-\bar{Y} & =\hat{Y}_{i}-\bar{Y}+\hat{e}_{i}
\end{aligned}
$$

- We want to know whether $Y_{i}-\bar{Y}$ (variation in Y) is largely explained by $\hat{Y}_{i}-\bar{\gamma}$ (variation in \hat{Y}) or not.
- Note:

$$
\begin{aligned}
Y_{i} & =\hat{Y}_{i}+\hat{e}_{i} \\
\Rightarrow \sum Y_{i} & =\sum \hat{Y}_{i}+\sum \hat{e}_{i} \\
\Rightarrow \frac{1}{n} \sum Y_{i} & =\frac{1}{n} \sum \hat{Y}_{i} \\
\Rightarrow \bar{Y} & =\overline{\hat{Y}}
\end{aligned}
$$

How Good Is the Fitted Regression Line? [cont'd]

- Therefore,

$$
\left(Y_{i}-\bar{Y}\right)=\left(\hat{Y}_{i}-\bar{Y}\right)+\hat{e}_{i}
$$

- $Y_{i}-\bar{Y}$: variation in Y_{i} around its mean
- $\hat{Y}_{i}-\bar{Y}\left(=\hat{Y}_{i}-\bar{Y}\right)$: variation in Y_{i} explained by X_{i} around its mean
- \hat{e}_{i} : variation in Y_{i} not explained by X_{i}
- For a "good" fit, $\hat{Y}_{i}-\bar{Y}$ should have "big" proportion. Then, what would be an overall measure of fit?
- Consider

$$
\frac{\sum\left(\hat{Y}_{i}-\bar{Y}\right)}{\sum\left(Y_{i}-\bar{Y}\right)}
$$

- We cannot use the above because it has zeros in both numerator and denominator.

Coefficient of Determination $\left(R^{2}\right)$

$$
\begin{aligned}
\sum\left(Y_{i}-\bar{Y}\right)^{2} & =\sum\left(\hat{Y}_{i}-\bar{Y}+\hat{e}_{i}\right)^{2} \\
& =\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum \hat{e}_{i}^{2}+2 \sum\left(\hat{Y}_{i}-\bar{Y}\right) \hat{e}_{i} \\
& =\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum \hat{e}_{i}^{2}(\text { Why? })
\end{aligned}
$$

- Denote:
- $\sum\left(Y_{i}-\bar{Y}\right)^{2}$: TSS (Total Sum of Squares), total variation of Y
- $\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$: ESS (Explained Sum of Squares), total variation of \hat{Y}
- $\sum \hat{e}_{i}^{2}$: RSS (Residual Sum of Squares), total unexplained variation of Y

$$
T S S=E S S+R S S
$$

Coefficient of Determination $\left(R^{2}\right)$ [cont'c]

- Coefficient of Determination $\left(R^{2}\right)$:

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}
$$

- Note:

$$
0 \leq R^{2} \leq 1
$$

- $R^{2}=0: E S S=0$, which means $\hat{Y}_{i}-\bar{Y}=0$.
- Variation in X does not help predicting variation in Y
- There is no relationship between the regressand and the regressor (i.e. $\hat{\beta}_{2}=0$).
- $R^{2}=1: R S S=0$, which means $\hat{e}_{i}=0$.
- It means a perfect fit, i.e. all data lie on SRF.

Coefficient of Determination $\left(R^{2}\right)$ [cont'c]

- R^{2} just compares the values of the $\left(\hat{Y}_{i}-\bar{Y}\right)$'s to the \hat{e}_{i} 's.
- R^{2} is just a descriptive statistic.
- R^{2} does never measures the quality of regressions.
- It is never objective of regression to increase R^{2}.
- The values of R^{2} can be easily manipulated.
- For example, adding any regressors in the regression will increase R^{2}, which is meaningless.

Example: Food Expenditure and Income

$$
\begin{gathered}
\text { food_exp }=\underset{(43.410)}{83.4160}+\underset{(2.0933)}{10.2096} \text { income } \\
T=40 \quad R^{2}=0.3850 \\
\text { (standard errors in parentheses) }
\end{gathered}
$$

- Variation of income about its mean explains about 38.5% of the variation of food expenditure in the linear regression model.

R^{2} and Correlation Coefficient

- Sample correlation coefficient: Using sample analogues of covariance and variances, the sample correlation coefficient is given by

$$
r_{X, Y}=\frac{\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)^{2}} \cdot \sqrt{\frac{1}{n-1} \sum\left(Y_{i}-\bar{Y}\right)^{2}}}=\frac{\sum x_{i} y_{i}}{\sqrt{\sum x_{i}^{2}} \sqrt{\sum y_{i}^{2}}}
$$

where $x_{i}=X_{i}-\bar{X}$ and $y_{i}=Y_{i}-\bar{Y}$.

- The sample correlation coefficient has a value between -1 and 1 .
- It measures the strength of the linear association.
- The sign of $r_{X, Y}$ is the same as that of OLS estimator in the linear regression model.

R^{2} and Correlation Coefficient [ont'd]

- We can show that

$$
R^{2}=r_{X, Y}^{2}
$$

(Why?)

$$
\begin{aligned}
E S S= & \sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}=\sum\left(\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} \bar{X}\right)^{2} \\
= & \hat{\beta}_{2}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}=\hat{\beta}_{2}^{2} \sum x_{i}^{2} \\
= & \left(\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}\right)^{2} \sum x_{i}^{2}=\frac{\left(\sum x_{i} y_{i}\right)^{2}}{\sum x_{i}^{2}} \\
& \Longrightarrow R^{2}=\frac{E S S}{T S S}=\frac{\left(\sum x_{i} y_{i}\right)^{2}}{\sum x_{i}^{2} \sum y_{i}^{2}}=r_{X, Y}^{2}
\end{aligned}
$$

- R^{2} can be thought as a measure of the strength of the "linear" relationship between two variables X and Y.

Functional Forms of Regression Models

Functional Forms of Regression Models

- Usually, a linear model implies "linear in parameters" in most cases.
- In this sense, the linear regression models are not necessarily linear in variables.
- Variables (both dependent and independent) can be transformed in any convenient way (e.g. take logs, the reciprocal of data, etc.)
- Transformation in variables should be based on economic theories and models.
- In particular, we discuss the following regression models:
(1) Log-Linear Model
(2) Semi-Log Model
(3) Reciprocal Model

Log-Linear Model

$$
\ln Y_{i}=\beta_{1}+\beta_{2} \ln X_{i}+e_{i}
$$

- One attractive feature of the log-linear model is that the slope coefficient β_{2} measures the elasticity of Y with respect to X, that is, the percentile change in Y for given small percentile change in X.

$$
\begin{aligned}
\beta_{2} & =\frac{d \ln Y}{d \ln X} \\
& =d \ln Y \cdot \frac{d Y}{d Y} \cdot \frac{d X}{d X} \cdot \frac{1}{d \ln X} \\
& =\frac{d \ln Y}{d Y} \cdot d Y \cdot \frac{d X}{d \ln X} \cdot \frac{1}{d X} \\
& =\frac{\frac{d \ln Y}{d Y} \cdot d Y}{\frac{d \ln X}{d X} \cdot d X}=\frac{\frac{d Y}{Y}}{\frac{d X}{X}} \\
& =\frac{\% \text { change in } Y}{\% \text { change in } X}=\text { Elasticity of } Y \text { w.r.t. } X
\end{aligned}
$$

Log-Linear Model [cont d]

- Example:

$$
\widehat{\ln Y}_{i}=0.7774-0.2530 \ln X_{i}
$$

- Y : Coffee consumption, cups per person a day
- X: Real price of coffee, dollars per pound
- The price elasticity of coffee demand is -0.25 !
- That is, for 1% increase in the real price of coffee, the demand for coffee on the average decreases by about 0.25%.

Other Functional Forms

- Semi-Log model
- In $Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}($ Log-Lin model $)$
- $Y_{i}=\beta_{1}+\beta_{2} \ln X_{i}+e_{i}$ (Lin-Log model)
- Reciprocal model
- $Y_{i}=\beta_{1}+\beta_{2} \frac{1}{X_{i}}+e_{i}$

Choice of Functional Form

- We discussed several functional forms an empirical model can assume within the confines of linear ("linear-in-parameter") models.
- It is important that we choose an appropriate model for empirical estimation.
- The underlying theory (e.g. consumption theory, Philips curve, etc.) may suggest a particular functional form.
- In most cases, a simple linear model can be the best specification.
- Nevertheless, be sure you are able to justify the functional form you have chosen.
- For example, spend some time examining the sensitivity of your results by making modifications to the variables included in the model.
- If your results are stable to these types of variations, that provides justification for your conclusion.
- Note that, there is no denying that a great deal of skill and experience are required in choosing an appropriate model!

Scaling and Units of Measurement

The Effects of Scaling the Data

- Consider the original regression model is

$$
Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}
$$

- Then, the fitted model is

$$
Y_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}+\hat{e}_{i}
$$

- Changing the scale of X and Y : Define new variables

$$
\begin{aligned}
& Y_{i}^{*}=\omega_{1} Y_{i} \\
& X_{i}^{*}=\omega_{2} X_{i}
\end{aligned}
$$

- For example, when Y_{i} is food expenditure (measured in $\$ 100$) and X_{i} is income (measured in $\$ 100$), you can change the unit from $\$ 100$ to $\$ 1,000$ by defining

$$
Y_{i}^{*}=\frac{1}{10} Y_{i}, \quad X_{i}^{*}=\frac{1}{10} X_{i}
$$

- Then Y_{i}^{*} is food expenditure (measured in $\$ 1,000$) and X_{i}^{*} is income (measured in $\$ 1,000$).

The Effects of Scaling the Data [contd]

- Since, $Y_{i}=\frac{1}{\omega_{1}} Y_{i}^{*}$ and $X_{i}=\frac{1}{\omega_{2}} X_{i}^{*}$,

$$
\begin{aligned}
& Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i} \\
& \Longrightarrow \quad \frac{1}{\omega_{1}} Y_{i}^{*}=\beta_{1}+\beta_{2}\left(\frac{1}{\omega_{2}} X_{i}^{*}\right)+e_{i} \\
& \Longrightarrow \quad Y_{i}^{*}=\omega_{1} \beta_{1}+\frac{\omega_{1}}{\omega_{2}} \beta_{2} X_{i}^{*}+\omega_{1} e_{i} \\
& \Longrightarrow Y_{i}^{*}=\beta_{1}^{*}+\beta_{2}^{*} X_{i}^{*}+e_{i}^{*}
\end{aligned}
$$

where $\beta_{1}^{*}=\omega_{1} \beta_{1}, \beta_{2}^{*}=\left(\omega_{1} / \omega_{2}\right) \beta_{2}$ and $e_{i}^{*}=\omega_{1} e_{i}$.

- The fitted regression model is:

$$
Y_{i}^{*}=\hat{\beta}_{1}^{*}+\hat{\beta}_{2}^{*} X_{i}^{*}+\hat{e}_{i}^{*}
$$

where $\hat{e}_{i}^{*}=\omega_{1} \hat{e}_{i}$.

The Effects of Scaling the Data [cont'd]

- We can apply OLS methods, and we can obtain OLS estimator $\hat{\beta}_{1}^{*}, \hat{\beta}_{2}^{*}$.

$$
\hat{\beta}_{2}^{*}=\frac{\sum x_{i}^{*} y_{i}^{*}}{\sum x_{i}^{* 2}}, \quad \hat{\beta}_{1}^{*}=\bar{Y}^{*}-\hat{\beta}_{2}^{*} \overline{X^{*}}
$$

- It can be verified that:

$$
\begin{aligned}
\hat{\beta}_{2}^{*} & =\left(\frac{\omega_{1}}{\omega_{2}}\right) \hat{\beta}_{2}, \quad \hat{\beta}_{1}^{*}=\omega_{1} \hat{\beta}_{1} \\
\operatorname{Var}\left(\hat{\beta}_{2}^{*}\right) & =\left(\frac{\omega_{1}}{\omega_{2}}\right)^{2} \operatorname{Var}\left(\hat{\beta}_{2}\right), \quad \operatorname{Var}\left(\hat{\beta}_{1}^{*}\right)=\omega_{1}^{2} \operatorname{Var}\left(\hat{\beta}_{1}\right) \\
\hat{\sigma}^{2} & =\omega_{1}^{2} \hat{\sigma}^{2}
\end{aligned}
$$

- It is clear that, given the regression results based on one scale of measurement, we can derive another scale of measurement once the scaling factors (ω_{1} and ω_{2}) are known.
- Note that $R^{2}=R^{2 *}$!

The Effects of Scaling the Data [cont'd]

- Changing the scale of X only
- Only slope coefficient and its variance are multiplied by the factor $\left(\frac{1}{\omega_{2}}\right)$.
- Changing the scale of Y only
- Slope coefficient, intercept, and their standard errors are all multiplied by the same factor ω_{1}.
- The same scale to X and Y
- No change in the slope parameter and its variance, but intercept and its standard error are both multiplied by ω_{1}.

A Word about Interpretation

- Since the slope coefficient β_{2} is simply the rate of change, it is measured in the units of the ratio:

$$
\frac{\text { Units of the dependent variable }}{\text { Units of the explanatory variable }}
$$

- For example, using our example of food expenditure and household income
(Model 1: Y_{i} in \$100, X_{i} in \$100) $\hat{Y}_{i}=83.42+10.21 X_{i}$
(Model 2: Y_{i} in $\$ 100, X_{i}$ in $\left.\$ 1,000\right) \hat{Y}_{i}=83.42+102.1 X_{i}$
- Interpretation of Model 1: $\$ 100$ change in income leads to 10.21 hundred dollar change in food expenditure.
- Interpretation of Model 2: \$1,000 change in income leads to 102.1 hundred dollar change in food expenditure.
- Note that the two results are of course identical in the effects of income on food expenditure.

