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Coefficient of Determination



How Good Is the Fitted Regression Line?

So far, we were concerned with the problem of estimating regression
coefficients.

We now consider the goodness of fit of the fitted regression line to data.

That is, we will find out how “well” the sample regression line
(
Ŷi
)
fits the

data (Yi ).

Question: Is the variation in the dependent variable largely explained by the
variation in the independent variable ?

If yes, we have a “good fit”!!
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How Good Is the Fitted Regression Line? [cont’d]

Yi = β̂1 + β̂2Xi + êi

= Ŷi + êi

⇒ Yi − Ȳ = Ŷi − Ȳ + êi

We want to know whether Yi − Ȳ (variation in Y ) is largely explained by
Ŷi − ¯̂Y (variation in Ŷ ) or not.

Note:

Yi = Ŷi + êi

⇒ ∑ Yi = ∑ Ŷi + ∑ êi

⇒ 1
n ∑ Yi =

1
n ∑ Ŷi

⇒ Ȳ = ¯̂Y
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How Good Is the Fitted Regression Line? [cont’d]

Therefore,

(Yi − Ȳ ) =
(
Ŷi − Ȳ

)
+ êi

Yi − Ȳ : variation in Yi around its mean

Ŷi − Ȳ
(
= Ŷi − ¯̂Y

)
: variation in Yi explained by Xi around its mean

êi : variation in Yi not explained by Xi

For a “good” fit, Ŷi − Ȳ should have “big” proportion. Then, what would
be an overall measure of fit?

Consider
∑
(
Ŷi − Ȳ

)
∑ (Yi − Ȳ )

We cannot use the above because it has zeros in both numerator and
denominator.
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Coefficient of Determination (R2)

∑ (Yi − Ȳ )
2
= ∑

(
Ŷi − Ȳ + êi

)2
= ∑

(
Ŷi − Ȳ

)2
+ ∑ ê2i + 2∑

(
Ŷi − Ȳ

)
êi

= ∑
(
Ŷi − Ȳ

)2
+ ∑ ê2i (Why?)

Denote:
∑ (Yi − Ȳ )

2: TSS (Total Sum of Squares), total variation of Y

∑
(
Ŷi − Ȳ

)2 : ESS (Explained Sum of Squares), total variation of Ŷ
∑ ê2i : RSS (Residual Sum of Squares), total unexplained variation of Y

TSS = ESS + RSS
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Coefficient of Determination (R2) [cont’d]

Coefficient of Determination (R2):

R2 =
ESS
TSS = 1− RSS

TSS
Note:

0 ≤ R2 ≤ 1

R2 = 0: ESS = 0, which means Ŷi − Ȳ = 0.
Variation in X does not help predicting variation in Y
There is no relationship between the regressand and the regressor (i .e. β̂2 = 0).

R2 = 1: RSS = 0, which means êi = 0.
It means a perfect fit, i .e. all data lie on SRF.
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Coefficient of Determination (R2) [cont’d]

R2 just compares the values of the
(
Ŷi − Ȳ

)
’s to the êi ’s.

R2 is just a descriptive statistic.

R2 does never measures the quality of regressions.

It is never objective of regression to increase R2.

The values of R2 can be easily manipulated.

For example, adding any regressors in the regression will increase R2, which is
meaningless.
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Example: Food Expenditure and Income

̂food_exp = 83.4160
(43.410)

+ 10.2096
(2.0933)

income

T = 40 R2 = 0.3850
(standard errors in parentheses)

Variation of income about its mean explains about 38.5% of the variation of
food expenditure in the linear regression model.
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R2 and Correlation Coefficient

Sample correlation coefficient: Using sample analogues of covariance and
variances, the sample correlation coefficient is given by

rX ,Y =
1

n−1 ∑ (Xi − X̄ ) (Yi − Ȳ )√
1

n−1 ∑ (Xi − X̄ )
2 ·
√

1
n−1 ∑ (Yi − Ȳ )

2
=

∑ xiyi√
∑ x2i

√
∑ y2i

where xi = Xi − X̄ and yi = Yi − Ȳ .

The sample correlation coefficient has a value between -1 and 1.

It measures the strength of the linear association.

The sign of rX ,Y is the same as that of OLS estimator in the linear regression
model.
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R2 and Correlation Coefficient [cont’d]

We can show that

R2 = r2X ,Y

(Why?)

ESS = ∑
(
Ŷi − Ȳ

)2
= ∑

(
β̂1 + β̂2Xi − β̂1 − β̂2X̄

)2
= β̂22 ∑ (Xi − X̄ )

2
= β̂22 ∑ x2i

=

(
∑ xiyi

∑ x2i

)2

∑ x2i =
(∑ xiyi )

2

∑ x2i

=⇒ R2 =
ESS
TSS =

(∑ xiyi )
2

∑ x2i ∑ y2i
= r2X ,Y

R2 can be thought as a measure of the strength of the “linear” relationship
between two variables X and Y .
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Functional Forms of Regression Models



Functional Forms of Regression Models

Usually, a linear model implies “linear in parameters” in most cases.
In this sense, the linear regression models are not necessarily linear in variables.

Variables (both dependent and independent) can be transformed in any
convenient way (e.g. take logs, the reciprocal of data, etc.)

Transformation in variables should be based on economic theories and
models.

In particular, we discuss the following regression models:
1 Log-Linear Model
2 Semi-Log Model
3 Reciprocal Model
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Log-Linear Model

lnYi = β1 + β2 lnXi + ei

One attractive feature of the log-linear model is that the slope coefficient β2
measures the elasticity of Y with respect to X , that is, the percentile
change in Y for given small percentile change in X .

β2 =
d lnY
d lnX

= d lnY · dY
dY ·

dX
dX ·

1
d lnX

=
d lnY

dY · dY · dX
d lnX ·

1
dX

=
d lnY

dY · dY
d lnX

dX · dX
=

dY
Y
dX
X

=
% change in Y
% change in X = Elasticity of Y w.r.t. X
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Log-Linear Model [cont’d]

Example:

̂lnYi = 0.7774− 0.2530 lnXi

Y : Coffee consumption, cups per person a day

X : Real price of coffee, dollars per pound

The price elasticity of coffee demand is −0.25!

That is, for 1% increase in the real price of coffee, the demand for coffee on
the average decreases by about 0.25%.
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Other Functional Forms

Semi-Log model

lnYi = β1 + β2Xi + ei (Log-Lin model)

Yi = β1 + β2 lnXi + ei (Lin-Log model)

Reciprocal model

Yi = β1 + β2
1
Xi

+ ei
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Choice of Functional Form

We discussed several functional forms an empirical model can assume within
the confines of linear (“linear-in-parameter”) models.

It is important that we choose an appropriate model for empirical estimation.

The underlying theory (e.g. consumption theory, Philips curve, etc.) may
suggest a particular functional form.

In most cases, a simple linear model can be the best specification.

Nevertheless, be sure you are able to justify the functional form you have
chosen.

For example, spend some time examining the sensitivity of your results by
making modifications to the variables included in the model.

If your results are stable to these types of variations, that provides justification
for your conclusion.

Note that, there is no denying that a great deal of skill and experience are
required in choosing an appropriate model!
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Scaling and Units of Measurement



The Effects of Scaling the Data
Consider the original regression model is

Yi = β1 + β2Xi + ei
Then, the fitted model is

Yi = β̂1 + β̂2Xi + êi

Changing the scale of X and Y : Define new variables

Y ∗i = ω1Yi

X ∗i = ω2Xi

For example, when Yi is food expenditure (measured in $100) and Xi is
income (measured in $100), you can change the unit from $100 to $1,000 by
defining

Y ∗i =
1
10Yi , X ∗i =

1
10Xi

Then Y ∗i is food expenditure (measured in $1,000) and X ∗i is income
(measured in $1,000).
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The Effects of Scaling the Data [cont’d]

Since, Yi =
1

ω1
Y ∗i and Xi =

1
ω2

X ∗i ,

Yi = β1 + β2Xi + ei

=⇒ 1
ω1

Y ∗i = β1 + β2

(
1

ω2
X ∗i
)
+ ei

=⇒ Y ∗i = ω1β1 +
ω1
ω2

β2X ∗i + ω1ei

=⇒ Y ∗i = β∗1 + β∗2X ∗i + e∗i

where β∗1 = ω1β1, β∗2 = (ω1/ω2) β2 and e∗i = ω1ei .

The fitted regression model is:

Y ∗i = β̂∗1 + β̂∗2X ∗i + ê∗i
where ê∗i = ω1êi .
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The Effects of Scaling the Data [cont’d]

We can apply OLS methods, and we can obtain OLS estimator β̂∗1, β̂∗2.

β̂∗2 =
∑ x∗i y∗i
∑ x∗2i

, β̂∗1 = Ȳ ∗ − β̂∗2X̄ ∗

It can be verified that:

β̂∗2 =

(
ω1
ω2

)
β̂2, β̂∗1 = ω1 β̂1

Var
(

β̂∗2
)
=

(
ω1
ω2

)2
Var

(
β̂2
)
, Var

(
β̂∗1
)
= ω2

1Var
(

β̂1
)

σ̂2∗ = ω2
1 σ̂2

It is clear that, given the regression results based on one scale of
measurement, we can derive another scale of measurement once the scaling
factors (ω1 and ω2) are known.

Note that R2 = R2∗!
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The Effects of Scaling the Data [cont’d]

Changing the scale of X only

Only slope coefficient and its variance are multiplied by the factor
(

1
ω2

)
.

Changing the scale of Y only

Slope coefficient, intercept, and their standard errors are all multiplied by the
same factor ω1.

The same scale to X and Y

No change in the slope parameter and its variance, but intercept and its
standard error are both multiplied by ω1.
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A Word about Interpretation

Since the slope coefficient β2 is simply the rate of change, it is measured in
the units of the ratio:

Units of the dependent variable
Units of the explanatory variable

For example, using our example of food expenditure and household income

(Model 1: Yi in $100, Xi in $100) Ŷi = 83.42+ 10.21Xi

(Model 2: Yi in $100, Xi in $1,000) Ŷi = 83.42+ 102.1Xi

Interpretation of Model 1: $100 change in income leads to 10.21 hundred
dollar change in food expenditure.

Interpretation of Model 2: $1,000 change in income leads to 102.1 hundred
dollar change in food expenditure.

Note that the two results are of course identical in the effects of income on
food expenditure.
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