Inference in Simple Regression 1

Class 6

Wonmun Shin (wonmun.shin@sejong.ac.kr)

Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture notes.

イロン イ団 とく ヨン イヨン

Distributions of OLS Estimators

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

• Additional assumption: $e_i \sim N(0, \sigma^2)$ Normality assumption

$$\hat{\beta}_2 = \beta_2 + \sum \omega_i e_i = \beta_2 + \underbrace{\omega_1 e_1 + \omega_2 e_2 + \dots + \omega_n e_n}_{\text{Linear Combination of } e_i}$$

Note: Any <u>linear</u> combination of independent *normal* random variables has a *normal* distribution

$$\begin{array}{l} \rightarrow \hat{\beta}_{2} - \beta_{2} = \sum \omega_{i} e_{i} \sim \mathcal{N}\left(0, \ \sigma^{2} \sum \omega_{i}^{2}\right) \equiv \mathcal{N}\left(0, \ \frac{\sigma^{2}}{\sum x_{i}^{2}}\right) \\ \\ \therefore \hat{\beta}_{2} \sim \mathcal{N}\left(\beta_{2}, \ \textit{Var}\left(\hat{\beta}_{2}\right)\right) \end{array}$$
• Likewise, $\hat{\beta}_{1} \sim \mathcal{N}\left(\beta_{1}, \ \textit{Var}\left(\hat{\beta}_{1}\right)\right)$

イロト イ理ト イヨト イヨト 二ヨー

Distribution of OLS Estimator [cont'd]

$$\frac{\hat{\beta}_{2} - \beta_{2}}{\sqrt{\textit{Var}\left(\hat{\beta}_{2}\right)}} \sim \textit{N}\left(0, 1\right), \quad \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\textit{Var}\left(\hat{\beta}_{1}\right)}} \sim \textit{N}\left(0, 1\right)$$

- But we don't know $Var(\hat{\beta}_2)$ and $Var(\hat{\beta}_1)$ because we don't know σ^2 .
 - Let us use $\widehat{Var\left(\hat{\beta}_{2}\right)} = \frac{\hat{\sigma}^{2}}{\Sigma x_{i}^{2}}$ and $\widehat{Var\left(\hat{\beta}_{1}\right)} = \frac{\hat{\sigma}^{2}}{n} \frac{\Sigma X_{i}^{2}}{\Sigma x_{i}^{2}}$ where $\hat{\sigma^{2}} = \frac{\Sigma \hat{e}_{i}^{2}}{n-2}$.

• Then,
$$\frac{\beta_2 - \beta_2}{\sqrt{Var(\hat{\beta}_2)}}$$
 follows a normal? Unfortunately, Not.

• (optional) We can show that it follows t distribution, t(n-2).

<ロ> <四> <四> <四> <三</p>

- When *n* is sufficiently large, we can apply **CLT**!!
 - By **CLT**, it can be shown that $\hat{\beta}_2$ is approximately normal (*without normality assumption*):

$$rac{\hat{eta}_2-eta_2}{\sqrt{\textit{Var}\left(\hat{eta}_2
ight)}}\sim \textit{N}\left(0,1
ight)$$

• When *n* is large, we can expect the value of $Var(\hat{\beta}_2)$ and $Var(\hat{\beta}_2)$ are very close ($Var(\hat{\beta}_2) \longrightarrow Var(\hat{\beta}_2)$ since $\hat{\sigma}^2 \longrightarrow \sigma^2$), and therefore we have

$$\frac{\hat{\beta}_{2}-\beta_{2}}{\sqrt{\widehat{\textit{Var}\left(\hat{\beta}_{2}\right)}}}\sim\textit{N}\left(0,1\right)$$

イロン イヨン イヨン イヨン 三日

Hypothesis Testing

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- Many economic problems require some basis for deciding whether a parameter is a specified value or not, or whether it is positive or negative.
- For example, we are interested in finding out whether the slope coefficient β_2 is zero or not.
 - Consider an econometric model with a dependent variable of food expenditure and an independent variable of income.
 - In this model, we are interested in figuring out whether the food expenditure is affected by your income, that is, whether the coefficient β_2 is zero or not.
- Then, the null hypothesis will be $H_0: \beta_2 = 0$ against the alternative $H_1: \beta_2 \neq 0$.
- Hypothesis testing procedures in econometrics compare our conjecture about the econometric model to the information contained in a sample of data.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We want to test whether $\beta_2 = 0$ or not.
- [Step 1] Set the hypothesis
- [Step 2] Test statistic
- [Step 3] Set the rejection region
- [Step 4] Decision

2

- Specify the null and alternative hypotheses.
- Null hypothesis

$$H_0: \ \beta_2=0$$

• (Two-sided) Alternative hypothesis

 $H_1: \beta_2 \neq 0$

æ

Step 2: Test Statistic

- **Distribution of estimator** (that is, distribution of $\hat{\beta}_2$)
 - Recall that

$$rac{\hat{eta}_2-eta_2}{\sqrt{\textit{Var}\left(\hat{eta}_2
ight)}}\sim \textit{N}\left(0,1
ight)$$

• When n is sufficiently large, we can expect that the values of $Var(\hat{\beta}_2)$ and $Var(\hat{\beta}_2)$ are very close, and therefore we have

$$\frac{\hat{\beta}_{2}-\beta_{2}}{\sqrt{\widehat{Var\left(\hat{\beta}_{2}\right)}}}\sim N\left(0,1\right)$$

• Under the null, compute a test statistic: *t-statistic*

$$t = \frac{\hat{\beta}_2}{\sqrt{Var\left(\hat{\beta}_2\right)}} \sim N\left(0,1\right)$$

æ

Step 2: Test Statistic [cont'd]

• Decomposition of t-statistic:

- (A): this part follows N(0, 1).
- (B): this is zero under H_0 , and this is positive or negative under H_1 .
- \Rightarrow *t* will have zero mean if H_0 is correct, and *t* will have positive mean or negative mean if H_1 is correct.
- $\Rightarrow \hat{\beta}_2$ close to zero implies it is likely that H_0 is correct, and $\hat{\beta}_2$ far from zero implies it is likely that H_1 is correct.
- \Rightarrow We would reject H_0 in favor of H_1 if t is larger (for positive values) or smaller (for negative values) than the number, called critical value.
- Then, how can we choose the critical value?

Note that

$$\begin{cases} \mathsf{Critical Value} \uparrow (\textit{in absolute value}) & \Rightarrow \begin{cases} \mathsf{Type \ I \ error} \downarrow \\ \mathsf{Type \ II \ error} \uparrow \\ \mathsf{Critical Value} \downarrow (\textit{in absolute value}) & \Rightarrow \begin{cases} \mathsf{Type \ I \ error} \uparrow \\ \mathsf{Type \ I \ error} \uparrow \\ \mathsf{Type \ II \ error} \downarrow \end{cases} \end{cases}$$

- Fix a significance level (α)
 - Significance level is the probability of Type I error and size of the test.
 - Usually, $\alpha = 0.01, 0.05, 0.10$.
- Find the critical value corresponding to the chosen α .

- How can we obtain the critical value?
 - Recall that our test statistic (*t*-statistic) follows standard normal distribution if H_0 is correct.
 - From the standard normal distribution table (or using software package), find $z_{\frac{\alpha}{2}}$.
 - As we consider two-sided alternative, we should find $z_{\frac{\alpha}{2}}$ but not z_{α} .
 - For example, if you choose $\alpha = 5\%$, then you should find $z_{0.025}$.
 - $z_{\frac{\alpha}{2}}$ is the critical value!
- Set the rejection region: Reject $H_0: \beta_2 = 0$ in favor of $H_1: \beta_2 \neq 0$ if

$$t>z_{rac{lpha}{2}}$$
 or $t<-z_{rac{lpha}{2}}$

- We would reject *H*₀ in favor of *H*₁ if *t* is larger (for positive values) or smaller (for negative values) than critical value.
 - When we reject H₀: β₂ = 0, we say that the estimate β₂ is (statistically) significant at the significance level of α.
 - If t is not on the rejection region, we cannot reject H_0 . However, it does not mean that H_0 is true (due to Type II error).
 - For this reason, economists use "not reject H_0 " instead of "accept H_0 ".
 - Also, obviously, the result of test depends on your choice of the significance level.
 - The higher α , the greater chance the null hypothesis will be rejected.
 - Therefore, the choice of α is important.

- *p*-value (probability value): The smallest significance level at which a null hypothesis can be rejected
 - *p*-value is very useful and convenient when you decide whether the estimate is significant or not. (You can calculate it by yourself, but please rely on computer!)
 - You can directly compare the *p*-value of the estimate with α .
 - If *p*-value is smaller than α , the estimate is significant!

イロン イ団 とく ヨン イヨン

Example: Food Expenditure and Income

$$\widehat{food_exp} = \underset{(43.410)}{83.4160} + \underset{(2.0933)}{10.2096}$$
 income (standard errors in parentheses)

- Using sample, the estimated coefficient is 10.21, *i.e.* $\hat{\beta}_2 = 10.21$.
- [Step 1] Set the hypothesis
 - We are interested in whether income affects food expenditure or not, *i.e.* $\beta_2 = 0$ or not.
 - $H_0: \beta_2 = 0 \text{ v.s. } H_1: \beta_2 \neq 0$
- [Step 2] Test statistic

$$t = \frac{\hat{\beta}_2}{\sqrt{Var(\hat{\beta}_2)}} = \frac{10.21}{2.09} = 4.88$$

<ロ> <四> <四> <四> <三</p>

$$\widehat{\text{food}_\text{exp}} = \underset{(43.410)}{83.4160} + \underset{(2.0933)}{10.2096}$$
 income

(standard errors in parentheses)

- [Step 3] Set the rejection region
 - Choose *α* = 0.05.
 - We can find $z_{\frac{\alpha}{2}} = z_{0.025} = 1.96$, which is the critical value.
 - Rejection region: t > 1.96 or t < -1.96
- [Step 4] Decision
 - Since t = 4.88 is larger than the critical value, 1.96, we reject the null $H_0: \beta_2 = 0.$
 - In other words, $\hat{\beta}_2 = 10.21$ is significant at 5% significance level.

Example: Food Expenditure and Income [cont'd]

Model 1: OLS, using observations 1–40 Dependent variable: food_exp

	Coefficient	Std. Error	<i>t</i> -ratio	p-value
const	83.4160	43.4102	1.922	0.0622
income	10.2096	2.09326	4.877	0.0000

- When you use statistics package (eg. Gretl, R, Stata, etc.), you can earn the resulting table such as the above one.
 - *t*-ratio presents *t*-statistic under the null hypothesis that the coefficient is zero.
 - <u>*p*-value is very useful measure</u>: *p*-value for $\hat{\beta}_2$ is close to zero, which means we reject the null H_0 : $\beta_2 = 0$ at 5% significance level as well as at extremely low significance level!

• 2-t rule of thumb

• If the number of degrees of freedom is more than 20, and if the significance level is set at 5%, then the coefficient is significant if |t| > 2 (or if the estimated coefficient value is more than twice as large as its standard error).

• Consider the null hypothesis against one-sided alternative as

$$H_0: \beta_2 = 0 \ v.s. \ H_1: \beta_2 > 0$$

- The one-sided test is conducted when we strongly believe that the effect of independent variable on dependent variable is one direction.
- Same process as the two-sided test, except obtaining the critical value and setting the rejection region.
 - If you choose $\alpha = 0.05$, then you should find $z_{\alpha} = z_{0.05}$, but not $z_{\frac{\alpha}{2}}$.
 - The rejection region will be: $t > z_{\alpha}$

э

Confidence Interval

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- Estimate $\hat{\beta}_2$ does not give any information about how far it can be from the true parameter β_2 .
- Therefore, we need to combine the estimate and its variance to present the reasonable range of estimate by constructing **confidence interval** for β₂.
- Actually, it is closely associated with the hypothesis testing because the hypothesis test also uses the information of the estimate and its variance.
 - We know that

$$\frac{\hat{\beta}_{2}-\beta_{2}}{\sqrt{\widehat{Var\left(\hat{\beta}_{2}\right)}}}\sim N\left(0,1\right)$$

イロン イ団 とく ヨン イヨン

Confidence Interval [cont'd]

• For a given α (significance level), there exists $z_{\frac{\alpha}{2}}$ such that

$$1 - \alpha = P\left(-z_{\frac{\alpha}{2}} < \frac{\hat{\beta}_{2} - \beta_{2}}{\sqrt{Var\left(\hat{\beta}_{2}\right)}} < z_{\frac{\alpha}{2}}\right)$$
$$= P\left(\hat{\beta}_{2} - z_{\frac{\alpha}{2}}\sqrt{Var\left(\hat{\beta}_{2}\right)} < \beta_{2} < \hat{\beta}_{2} + z_{\frac{\alpha}{2}}\sqrt{Var\left(\hat{\beta}_{2}\right)}\right)$$

• Therefore, $100(1-\alpha)$ % confidence interval for β_2 is:

$$\left[\hat{\beta}_{2}\pm z_{\frac{\alpha}{2}}\sqrt{\widehat{\textit{Var}\left(\hat{\beta}_{2}\right)}}\right]$$

イロト イロト イヨト イヨト 二日

- Interpretation of confidence interval
 - When the 95% ($\alpha = 0.05$) confidence interval of β_2 is [A, B], it means that 95% of sample realizations of [A, B] would contain the unknown population parameter β_2 .
 - That is, if we sample repeatedly and calculate the intervals by the realization of random variables A and B, then 95% of the intervals will contain the true β_2 .
- Note: if the $100(1-\alpha)$ % confidence interval of β_2 contains 0 (zero), we can say that the estimated coefficient $\hat{\beta}_2$ is not significant at 100α % significance level.