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What is Heteroskedasticity?



What is Heteroskedasticity?
Heteroskedasticity: hetero︸ ︷︷ ︸

different

+ skedasis︸ ︷︷ ︸
dispersion

Consider the following simple regression

Yi = β1 + β2Xi + ei

to explain household expenditure on food (Yi ) as a linear function of
household income (Xi ).

Then, we can consider the above linear relationship for two different groups:
high-income group and low-income group.

Intuitively, income is less important as an explanatory variable for food
expenditure of high-income group.

Food expenditure can be very different among high-income families due to their
preferences.

Therefore, the variance of food expenditure (or, the variance of error term) is
greater for high-income household.

This violates the homoskedasticity assumption in the classical assumptions.
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What is Heteroskedasticity? [cont’d]

Classical assumption (A3)

Var (Yi ) = Var (ei ) = σ2 for i = 1, · · · , n

Heteroskedasticity: To relax the above assumption, we allow for different
variances for different observations.

Var (Yi ) = Var (ei ) = σ2
i for i = 1, · · · , n

Here, σ2
i are all different across i .

The existence of different variances, or heteroskedasticity, is often
encountered when using cross-sectional data.
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Consequences of Heteroskedasticity



Consequences of Heteroskedasticity

Yi = β1 + β2Xi + ei

Question 1 Can we obtain the OLS estimators under heteroskedasticity?

Note that we did not use (A3) to construct the OLS estimators.

∴ We can earn β̂1 and β̂2 through the ordinary least square method.

β̂2 =
∑ xiyi

∑ x2i
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Consequences of Heteroskedasticity [cont’d]

Question 2 Then, does still the properties of OLS estimator stand?

Unbiasedness

β̂2 − β2 = ∑ ωi ei

→ E
(

β̂2 − β2
)
= E

(
∑ ωi ei

)
= ∑ ωi E (ei ) = 0

So, β̂2 is a still unbiased (and linear) estimator.

Variance of OLS estimator

Var
(

β̂2
)
= Var

(
β̂2 − β2

)
= Var

(
∑ ωi ei

)
= ω2

1Var (e1) + ω2
2Var (e2) + · · ·+ ω2

nVar (en)

= ω2
1σ2

1 + ω2
2σ2

2 + · · ·+ ω2
nσ2

n

= ∑ ω2
i σ2

i =
∑ x2i σ2

i[
∑ x2i

]2
The usual formula for the variance of the OLS estimator is incorrect.
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Consequences of Heteroskedasticity [cont’d]

Consistency

Recall that the sufficient condition of consistency is MSE → 0 as n→ ∞.

Bias
(

β̂2
)
= 0 and Var

(
β̂2
)
→ 0 as n→ ∞

∴ β̂2 is a still consistent estimator.

Recall, to do hypothesis testing, we needed the least squares standard error,
which was (under homoskedasticity):√

̂Var
(

β̂2
)
=

√
σ̂2

∑ x2i
where σ̂2 =

∑ ê2i
n− 2

However, as we have seen, the usual formula for Var
(

β̂2
)
in incorrect when

there exists heteroskedasticity.

Consequently, the usual least squares standard error is inconsistent.

Even if the OLS estimator of coefficients is consistent, the usual least squares
standard error should not be used to test hypothesis.
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Consequences of Heteroskedasticity [cont’d]

Question 3 We have different formula for the variance of the OLS
estimator. Then, the OLS estimator is still BLUE?

Gauss-Markov theorem does not apply any more, so OLS estimators are no
longer BLUE.

There exists another linear unbiased estimator of β2 which has a smaller
variance than β̂2 when the errors are heteroskedastic, namely Generalized
Least Squares (GLS) estimators.

Nevertheless, it doesn’t mean we cannot use the OLS estimator any more.
But we should sacrifice the accuracy of estimator owing to the larger variance.
Also, the probability of rejecting the null falls.
In fact, the usual least squares standard errors are inconsistent, which implies
the test results will be wrong if we do not consider the existence of
heteroskedasticity.
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Detecting Heteroskedasticity



Detecting Heteroskedasticity

How does one know that heteroskedasticity is present in a specific situation?

There are no golden rule for detecting heteroskedasticity.

In most cases, heteroskedasticity may be a matter of intuition, educated
guesswork, and prior empirical experience.

There are some informal or formal methods of detecting heteroskedasticity.

Most of methods are based on the examination of the OLS residuals (êi ) since
they are the ones we can observe, and not the error terms (ei ).

Informal methods
Nature of problem: Sometimes, the nature of the problem suggests whether
heteroskedasticity is likely to be encountered. (ex. regression of consumption on
income, regression of investment on sales)
Graphical method: Plot of residual squared (ê2i )

Formal methods: Park test, Goldfeld-Quandt (GQ) Test, White test, Glejser
test, Spearman’s rank correlation test, Breusch-Pagan LM test,
Koenker-Bassett test, · · · · · · · · ·
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Park Test
1. Park test

Park suggests that σ2
i is some function of the explanatory variable Xi .

The functional form he suggests is

σ2
i = σ2X γ

i eνi

→ ln σ2
i = ln σ2 + γ lnXi + νi

where νi is white noise, i .e. νi ∼ iid
(
0, σ2

ν

)
Since σ2

i is generally not known, Park suggests using ê2i as a proxy.

ln ê2i = constant + γ lnXi + νi

We can obtain γ̂ and test H0 : γ = 0.

If we reject the null, ∃ heteroskedasticity.

Caveats

Assumption would not be correct.
νi is white noise? It might be heteroskedastic.
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Goldfeld-Quandt Test
2. Goldfeld-Quandt Test (GQ Test)

Assumption: σ2
i is positively related to Xi

Test {
H0 : Homoskedasticity
H1 : σ2

i ≈ monotonically related to Xi

Reorder the observations according to the values of Xi (beginning with the lowest X value)

After omitting c central observations, divide the remaining (n− c) observations into two
groups: Group 1 (high Xi ) and Group 2 (low Xi )

Compute RSS1 and RSS2

F -statistic = RSS1/df1
RSS2/df2

∼ F (df1, df2)

If we reject the null (F -statistic > critical value), ∃ heteroskedasticity.

Caveats
Assumption would not be correct.
Choice of c is arbitrary.
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White Test

3. White Test

It is called White’s General Heteroskedasticity Test.

Test {
H0 : Homoskedasticity
H1 : Not homoskedasticity

Auxiliary regression

ê2i = α1 + α2Xi + α3X2
i + ui

We can compute R2 (= 1− RSS
TSS

)
which represents a measure of goodness of fit.

n · R2 asy∼ χ2
df

where the degree of freedom is (# of regressors - # of constant).

If we reject the null (n · R2 > critical value), ∃ heteroskedasticity.

Caveats H1 is too general → low power of test (especially, in small sample)
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Solutions for Heteroskedasticity



Solutions for Heteroskedasticity: Take Logarithms

1. Take Logarithms

Suppose that we recognize the existence of heteroskedasticity but do not
know any other things.

We want to reduce the variance even a little bit.

Log transformation

Yi = β1 + β2Xi + ei

→ lnYi = β1 + β2 lnXi + ei

Caution: The interpretation of β̂2 becomes different.
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Solutions for Heteroskedasticity: White Correction

2. White Correction

Given that the conventional lest squares are incorrect under the
heteroskedasticity, the White correction gives you a consistent estimator
for the variance of OLS estimator.

Recall

Var
(

β̂2
)
=

∑ x2i σ2
i[

∑ x2i
]2

White estimator (of standard error)

̂Var
(

β̂2
)
=

∑ x2i ê2i[
∑ x2i

]2
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Solutions for Heteroskedasticity: White Correction [cont’d]

If we use ̂Var
(

β̂2
)
, we can correct standard errors and t-statistics for OLS

estimators.

The squared residuals are used to approximate the variances, the White
estimator is appropriate in large samples.

However, OLS estimator β̂2 is still inefficient (since Gauss-Markov theorem
no longer holds).

One advantage for this procedure is that you need not know the form of the
heteroskedasticity.
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Solutions for Heteroskedasticity: GLS

3. Generalized Least Squares (GLS)

Under heteroskedasticity, OLS is not BLUE.

But an estimation method known as Generalized Least Squares (GLS)
which takes the heteroskedasticity into account explicitly obtains the
minimum variance within the class of linear unbiased estimators.

Assume that the heteroskedastic variances σ2
i are known.

Idea: let’s transform the regression model to make the error variances
homoskedastic.

Yi = β1 + β2Xi + ei underVar (ei ) = σ2
i

Divide the regression by σi as(
Yi
σi

)
= β1

(
1
σi

)
+ β2

(
Xi
σi

)
+

(
ei
σi

)
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Solutions for Heteroskedasticity: GLS [cont’d]

Why?

Var
(

ei
σi

)
= E

[(
ei
σi

)2
]
−
[
E
(

ei
σi

)]2
=

1
σ2

i
E
(
e2i
)

=
1

σ2
i

σ2
i = 1

That is, the error term divided by σi does not have heteroskedasticity problem
any more.

Define

Y ∗i =
Yi
σi

, X ∗1i =
1
σi
, X ∗2i =

Xi
σi

, e∗i =
ei
σi
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Solutions for Heteroskedasticity: GLS [cont’d]

Then, we obtain the new regression model

Y ∗i = β1X ∗1i + β2X ∗2i + e∗i underVar (e∗i ) = 1

Note that the transformed regression satisfies the classical assumptions.

Let β̂∗1 and β̂∗2 be the OLS estimators in the transformed regression: GLS
estimator

OLS estimators in the transformed model (which is the GLS estimators in the
original model) is the BLUE (according to Gauss-Markov Theorem)
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Solutions for Heteroskedasticity: GLS [cont’d]

In the transformed model, β̂∗1, β̂∗2 minimizes the following criterion function:

∑ ê∗2i = ∑
(

ê2i
σ2

i

)
= ∑

1
σ2

i

(
Yi − β̂1 − β̂2Xi

)2
∴ In the GLS estimation, we minimize a weighted sum of squares of residuals.

GLS estimator under heteroskedasticity = WLS (Weighted Least Squares)
estimator

Weight: 1
σ2

i
→ light weight on less informative ones, heavy weight on more

informative ones

However! We have to know the values (or structure) of σ2
i which are

generally not known → Infeasible GLS
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Solutions for Heteroskedasticity: FGLS

Feasible Generalized Least Squares (FGLS)

We can use estimated value σ̂2
i for the true parameters σ2

i .

We call the GLS estimator based on σ̂2
i as feasible GLS.

Since we use σ̂2
i instead of σ2

i , FGLS estimator may not be more efficient than
OLS estimator with White correction (particularly in small sample).

Furthermore, misspecification of heteroskedasticity may lead to an inconsistent
estimation.
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