Maximum Likelihood Estimation (MLE)

Class 2

Wonmun Shin
(wonmun.shin@sejong.ac.kr)

Department of Economics, Sejong University

* This lecture note is written based on Professor Chang-Jin Kim's lecture note .

Likelihood Function

Random Variable Y_{i}

$$
Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}
$$

- Classical assumptions (A1)-(A4) and Normality assumption (A5)

$$
\begin{gathered}
e_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right) \\
\rightarrow Y_{i} \sim N\left(\beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right)
\end{gathered}
$$

- $E\left(Y_{i}\right)=E\left(\beta_{1}+\beta_{2} X_{i}+e_{i}\right)=\beta_{1}+\beta_{2} X_{i}+E\left(e_{i}\right)=\beta_{1}+\beta_{2} X_{i}$
- $\operatorname{Var}\left(Y_{i}\right)=\operatorname{Var}\left(\beta_{1}+\beta_{2} X_{i}+e_{i}\right)=\operatorname{Var}\left(e_{i}\right)=\sigma^{2}$

Joint Probability Density Function

- Joint pdf (probability of density function) of $Y_{1}, Y_{2}, \cdots, Y_{n}$

$$
f\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid \beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right)
$$

- When Y_{i} are independent

$$
\begin{aligned}
& f\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid \beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right) \\
& =f\left(Y_{1} \mid \beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right) f\left(Y_{2} \mid \beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right) \cdots f\left(Y_{n} \mid \beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right)
\end{aligned}
$$

Joint Probability Density Function

- pdf of a normal distribution

$$
f\left(Y_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2 \sigma^{2}}\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2}}
$$

- Therefore, a joint pdf of Y_{i} is

$$
f\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid \beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right)=\frac{1}{\sigma^{n}(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2}}
$$

- The above is the joint pdf when we know β_{1}, β_{2}, and σ^{2} and we don't know Y_{i}, that is, we can earn the probability of observing Y_{i} jointly from the above.
- BTW, if $Y_{1}, Y_{2}, \cdots, Y_{n}$ are known or given but β_{1}, β_{2}, and σ^{2} are unknown constants, then we call the above "Likelihood Function".

Main Idea of Maximum Likelihood Estimation (MLE)

Main Idea of MLE (Maximum Likelihood Estimation)

- ML estimator: a value that maximizes the likelihood function.
- Recall what OLS is: a method minimizing the sum of squares of residuals
- MLE finds an estimator whose probability of extracting the data is highest when we observe the data.
- For example,

$$
\begin{aligned}
& \text { Student A } \begin{cases}\text { Average } & >90 \\
\text { Bad condition } & 50\end{cases} \\
& \text { Student B } \begin{cases}\text { Average } & <50 \\
\text { Good condition } & 90\end{cases}
\end{aligned}
$$

- If we observe a test score of 88 , then who is a student of the score?
- Good estimation might be "Student A" \rightarrow Idea of MLE

Main Idea of MLE [cont'd]

- Suppose that a basket which has 8 balls (? red balls, ? blue balls).
- Let a probability of picking up a red ball $p . \rightarrow p$ is a parameter.
- Random variable X_{1}, X_{2}, and X_{3}

$$
X_{i}= \begin{cases}1 & \text { when red ball is out } \rightarrow P\left(X_{i}=1\right)=p \\ 0 & \text { when blue ball is out } \rightarrow P\left(X_{i}=0\right)=1-p\end{cases}
$$

- Realization: $X_{1}=1, X_{2}=1$, and $X_{3}=0$
- Probability is $p \times p \times(1-p) \rightarrow \underbrace{L(p)=p^{2}(1-p)}_{\text {Likelihood function }}$

Main Idea of MLE (Maximum Likelihood Estimation)

- Consider the possible two candidates:
- Basket A: 2 red balls, 6 blue balls $\rightarrow p_{A}=\frac{1}{4}$
- Basket B: 6 red balls, 2 blue balls $\rightarrow p_{B}=\frac{3}{4}$
- When we observe $X_{1}=1, X_{2}=1$, and $X_{3}=0$, which candidate is more likely?
- $L\left(p_{A}=\frac{1}{4}\right)=\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{3}{64}$
- $L\left(p_{B}=\frac{3}{4}\right)=\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}=\frac{9}{64}$
- Therefore, Basket B is more likely, and $\hat{p}=\frac{3}{4}$ is a better estimate.
- Let's compute the ML estimate.

$$
\max _{p} L(p)=p^{2}(1-p)=p^{2}-p^{3}
$$

-(FOC) $2 p-3 p^{2}=p(2-3 p)=0 \quad \therefore \hat{p}_{M L E}=\frac{2}{3}$

- (SOC) $2-6 \hat{p}_{M L E}=2-6\left(\frac{2}{3}\right)=2-4=-2<0$

ML Estimator in Simple Regression

Log Likelihood Function

- Note The form of a joint pdf and a likelihood function is identical.
- Joint pdf

$$
f\left(Y_{1}, Y_{2}, \cdots, Y_{n} \mid \beta_{1}+\beta_{2} X_{i}, \sigma^{2}\right)=\frac{1}{\sigma^{n}(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2}}
$$

- Likelihood function

$$
L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid Y_{1}, Y_{2}, \cdots, Y_{n}\right)=\frac{1}{\sigma^{n}(\sqrt{2 \pi})^{n}} e^{-\frac{1}{2 \sigma^{2}} \Sigma\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2}}
$$

- We can take a (natural) log. (\because logarithm is monotonically increasing)

$$
\begin{aligned}
\ln L & =-n \ln \sigma-\frac{n}{2} \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2} \\
& =-\frac{n}{2} \ln \sigma^{2}-\frac{n}{2} \ln 2 \pi-\frac{1}{2 \sigma^{2}} \sum\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2}
\end{aligned}
$$

ML Estimators

- First order conditions
- $\left(w r t \beta_{1}\right)-\frac{1}{\sigma^{2}} \sum\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)(-1)=0$
- (wrt $\left.\beta_{2}\right)-\frac{1}{\sigma^{2}} \sum\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)\left(-X_{i}\right)=0$
- $\left(\mathrm{wrt} \sigma^{2}\right)-\frac{n}{2 \sigma^{2}}-\frac{1}{2} \sum\left(Y_{i}-\beta_{1}-\beta_{2} X_{i}\right)^{2}\left(-\frac{1}{\sigma^{4}}\right)=0$
- Let ML estimators $\hat{\beta}_{1}^{M L E}, \hat{\beta}_{2,}^{M L E}$, and $\hat{\sigma}^{2}{ }^{M L E}$
- From (1)

$$
\Sigma Y_{i}=n \hat{\beta}_{1}+\hat{\beta}_{2} \sum X_{i}
$$

- From (2)

$$
\Sigma Y_{i} X_{i}=\hat{\beta}_{1} \sum X_{i}+\hat{\beta}_{2} \sum X_{i}^{2}
$$

ML Estimators [cont'd]

- The above equations are identical to normal equations of OLS.

$$
\begin{gathered}
\therefore \hat{\beta}_{1}^{M L E}=\hat{\beta}_{1}^{O L S}, \hat{\beta}_{2}^{M L E}=\hat{\beta}_{2}^{O L S} \\
\text { i.e. } \hat{\beta}_{1}^{M L E}=\bar{Y}-\hat{\beta}_{2}^{M L E} \bar{X} \\
\hat{\beta}_{2}^{M L E}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}
\end{gathered}
$$

- From (3)

$$
\begin{aligned}
-\frac{n}{2 \hat{\sigma^{2}}}+\frac{1}{2 \hat{\sigma}^{4}} \sum\left(Y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} X_{i}\right)^{2} & =0 \\
\rightarrow \frac{n}{2 \hat{\sigma}^{2}} & =\frac{\sum \hat{e}_{i}^{2}}{2 \hat{\sigma}^{4}} \\
\rightarrow \hat{\sigma}^{2} & =\frac{\sum \hat{e}_{i}^{2}}{n}
\end{aligned}
$$

- Therefore, ${\hat{\sigma^{2}}}^{M L E}=\frac{\sum \hat{e}_{i}^{2}}{n}\left(\right.$ Note that ${\hat{\sigma^{2}}}^{M L E} \neq \hat{\sigma}^{2} O L S)$

Properties of ML Estimators

1. Unbiasedness and Consistency

- We know that $\hat{\beta}_{1}^{O L S}, \hat{\beta}_{2}^{O L S}$, and $\hat{\sigma}^{2}$ OLS are unbiased and consistent estimators.
- Therefore, $\hat{\beta}_{1}^{M L E}$ and $\hat{\beta}_{2}^{M L E}$ are unbiased and consistent estimators.
- However, $\hat{\sigma}^{2}{ }^{M L E}$ is not unbiased estimator.

$$
E\left(\hat{\sigma}^{2} M L E\right)=\frac{1}{n} E\left(\sum \hat{e}_{i}^{2}\right)=\frac{n-2}{n} \sigma^{2}=\sigma^{2}-\frac{2}{n} \sigma^{2} \neq \sigma^{2}
$$

- Bias $\left(\hat{\sigma}^{2}{ }^{M L E}\right)=E\left(\hat{\sigma}^{2}{ }^{M L E}\right)-\sigma^{2}=-\frac{2}{n} \sigma^{2}$
- Note ML estimator is generally NOT unbiased estimator.
- But ML estimator is consistent estimator!
- $\lim _{n \rightarrow \infty} \operatorname{Bias}\left({\hat{\sigma^{2}}}^{M L E}\right)=0$

Properties of ML Estimators [cont'd]

2. Efficiency

- Recall, OLS estimator is BLUE (Best Linear Unbiased Estimator).
- Also, OLS estimator is MVUE if we assume Normality.
- Since we got MLE under normality assumption, MLE is most efficient estimator.
- But MLE is not MVUE. Why? MLE is not always satisfying unbiasedness.
- Note that MLE is a consistent estimator (when sample is sufficiently large), and its variance is smallest.
- So in asymptotic world, MLE is theoretically best.
- (optional) When n is large, the variance of MLE converges to $\frac{1}{I(\theta)}$.
- $I(\theta):$ Fisher information $=-E\left[\frac{\partial^{2} \ln L(\theta)}{\partial \theta \partial \theta^{\prime}}\right]$
- $I(\theta)^{-1} \leq \Sigma$ where Σ is the variance of any consistent parameter
- Therefore, MLE is most efficient, and we call $I(\theta)^{-1}$ as Cramer-Rao lower bound.

ML Estimators: Pros and Cons

- MLE is very GENERAL estimation method.
- When we maximize the likelihood function, it is easy to impose any constraint.
- Invariance: MLE is invariant with respect to transformation.
- Suppose that $\hat{\theta}$ is the MLE of θ. Then, for any function $g, \hat{\eta}=g(\hat{\theta})$ is the MLE of $\eta=g(\theta)$.
- For example, a random variable $X \sim N(\theta, 1)$
- MLE of θ is $\hat{\theta}=X$
- MLE of $\eta=\theta^{2}$ is $\hat{\eta}=\hat{\theta}^{2}=X^{2}$
- Drawbacks
- Arbitrariness problem in choosing pdf of r.v.
- May not exist or may not be unique. (algorithm for computation is not that easy.)

