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Likelihood Function



Random Variable Yi

Yi = β1 + β2Xi + ei

Classical assumptions (A1)-(A4) and Normality assumption (A5)

ei
iid∼ N

(
0, σ2)

→ Yi ∼ N
(

β1 + β2Xi , σ2)

E (Yi ) = E (β1 + β2Xi + ei ) = β1 + β2Xi + E (ei ) = β1 + β2Xi

Var (Yi ) = Var (β1 + β2Xi + ei ) = Var (ei ) = σ2
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Joint Probability Density Function

Joint pdf (probability of density function) of Y1, Y2, · · · , Yn

f
(
Y1, Y2, · · · , Yn | β1 + β2Xi , σ2)

When Yi are independent

f
(
Y1, Y2, · · · , Yn | β1 + β2Xi , σ2)

= f
(
Y1 | β1 + β2Xi , σ2) f

(
Y2 | β1 + β2Xi , σ2) · · · f

(
Yn | β1 + β2Xi , σ2)
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Joint Probability Density Function

pdf of a normal distribution

f (Yi ) =
1√
2πσ2

e−
(Yi−µ)2

2σ2 =
1

σ
√
2π

e−
1

2σ2 (
Yi−β1−β2Xi )

2

Therefore, a joint pdf of Yi is

f
(
Y1, Y2, · · · , Yn | β1 + β2Xi , σ2) = 1

σn
(√

2π
)n e−

1
2σ2 ∑(Yi−β1−β2Xi )

2

The above is the joint pdf when we know β1, β2, and σ2 and we don’t know
Yi , that is, we can earn the probability of observing Yi jointly from the above.

BTW, if Y1, Y2, · · · , Yn are known or given but β1, β2, and σ2 are unknown
constants, then we call the above “Likelihood Function”.
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Main Idea of Maximum Likelihood Estimation
(MLE)



Main Idea of MLE (Maximum Likelihood Estimation)

ML estimator: a value that maximizes the likelihood function.

Recall what OLS is: a method minimizing the sum of squares of residuals

MLE finds an estimator whose probability of extracting the data is highest
when we observe the data.

For example,

Student A
{

Average > 90
Bad condition 50

Student B
{

Average < 50
Good condition 90

If we observe a test score of 88, then who is a student of the score?

Good estimation might be “Student A” → Idea of MLE
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Main Idea of MLE [cont’d]

Suppose that a basket which has 8 balls (? red balls, ? blue balls).

Let a probability of picking up a red ball p. → p is a parameter.

Random variable X1, X2, and X3

Xi =

{
1 when red ball is out → P (Xi = 1) = p
0 when blue ball is out → P (Xi = 0) = 1− p

Realization: X1 = 1, X2 = 1, and X3 = 0

Probability is p × p × (1− p)→ L (p) = p2 (1− p)︸ ︷︷ ︸
Likelihood function
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Main Idea of MLE (Maximum Likelihood Estimation)
Consider the possible two candidates:

Basket A: 2 red balls, 6 blue balls →pA = 1
4

Basket B: 6 red balls, 2 blue balls →pB = 3
4

When we observe X1 = 1, X2 = 1, and X3 = 0, which candidate is more
likely?

L
(
pA = 1

4
)
= 1

4 ×
1
4 ×

3
4 = 3

64

L
(
pB = 3

4
)
= 3

4 ×
3
4 ×

1
4 = 9

64

Therefore, Basket B is more likely, and p̂ = 3
4 is a better estimate.

Let’s compute the ML estimate.

max
p

L (p) = p2 (1− p) = p2 − p3

(FOC) 2p − 3p2 = p (2− 3p) = 0 ∴ p̂MLE = 2
3

(SOC) 2− 6p̂MLE = 2− 6
( 2
3
)
= 2− 4 = −2 < 0
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ML Estimator in Simple Regression



Log Likelihood Function
Note The form of a joint pdf and a likelihood function is identical.

Joint pdf

f
(
Y1, Y2, · · · , Yn | β1 + β2Xi , σ2) = 1

σn
(√

2π
)n e−

1
2σ2 ∑(Yi−β1−β2Xi )

2

Likelihood function

L
(

β1, β2, σ2 | Y1, Y2, · · · , Yn
)
=

1

σn
(√

2π
)n e−

1
2σ2 ∑(Yi−β1−β2Xi )

2

We can take a (natural) log. (∵ logarithm is monotonically increasing)

ln L = −n ln σ− n
2 ln (2π)− 1

2σ2 ∑ (Yi − β1 − β2Xi )
2

= −n
2 ln σ2 − n

2 ln 2π − 1
2σ2 ∑ (Yi − β1 − β2Xi )

2
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ML Estimators

First order conditions

(wrt β1) − 1
σ2 ∑ (Yi − β1 − β2Xi ) (−1) = 0 (1)

(wrt β2) − 1
σ2 ∑ (Yi − β1 − β2Xi ) (−Xi ) = 0 (2)

(wrt σ2) − n
2σ2 − 1

2 ∑ (Yi − β1 − β2Xi )
2 (− 1

σ4

)
= 0 (3)

Let ML estimators β̂MLE
1 , β̂MLE

2, , and σ̂2MLE

From (1)
ΣYi = nβ̂1 + β̂2 ∑ Xi

From (2)
ΣYiXi = β̂1 ∑ Xi + β̂2 ∑ X2

i
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ML Estimators [cont’d]

The above equations are identical to normal equations of OLS.

∴ β̂MLE
1 = β̂OLS

1 , β̂MLE
2 = β̂OLS

2

i .e. β̂MLE
1 = Ȳ − β̂MLE

2 X̄

β̂MLE
2 =

∑ xiyi

∑ x2i
From (3)

− n
2σ̂2

+
1

2σ̂4 ∑
(
Yi − β̂1 − β̂2Xi

)2
= 0

→ n
2σ̂2

=
∑ ê2i
2σ̂4

→ σ̂2 =
∑ ê2i

n

Therefore, σ̂2MLE
= ∑ ê2i

n (Note that σ̂2MLE 6= σ̂2OLS
)
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Properties of ML Estimators

1. Unbiasedness and Consistency

We know that β̂OLS
1 , β̂OLS

2 , and σ̂2OLS
are unbiased and consistent

estimators.

Therefore, β̂MLE
1 and β̂MLE

2 are unbiased and consistent estimators.

However, σ̂2MLE
is not unbiased estimator.

E
(

σ̂2MLE)
=

1
nE
(
∑ ê2i

)
=

n− 2
n σ2 = σ2 − 2

n σ2 6= σ2

Bias
(

σ̂2MLE)
= E

(
σ̂2MLE)− σ2 = − 2

n σ2

Note ML estimator is generally NOT unbiased estimator.

But ML estimator is consistent estimator!

limn→∞ Bias
(

σ̂2MLE)
= 0
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Properties of ML Estimators [cont’d]

2. Efficiency

Recall, OLS estimator is BLUE (Best Linear Unbiased Estimator).

Also, OLS estimator is MVUE if we assume Normality.

Since we got MLE under normality assumption, MLE is most efficient
estimator.

But MLE is not MVUE. Why? MLE is not always satisfying unbiasedness.

Note that MLE is a consistent estimator (when sample is sufficiently large),
and its variance is smallest.

So in asymptotic world, MLE is theoretically best.
(optional) When n is large, the variance of MLE converges to 1

I(θ) .

I (θ) : Fisher information = −E
[

∂2 lnL(θ)
∂θ∂θ′

]
I (θ)−1 ≤ Σ where Σ is the variance of any consistent parameter

Therefore, MLE is most efficient, and we call I (θ)−1 as Cramer-Rao lower bound.
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ML Estimators: Pros and Cons

MLE is very GENERAL estimation method.

When we maximize the likelihood function, it is easy to impose any constraint.

Invariance: MLE is invariant with respect to transformation.

Suppose that θ̂ is the MLE of θ. Then, for any function g , η̂ = g
(
θ̂
)
is the

MLE of η = g (θ).

For example, a random variable X ∼ N (θ, 1)

MLE of θ is θ̂ = X

MLE of η = θ2 is η̂ = θ̂2 = X2

Drawbacks

Arbitrariness problem in choosing pdf of r.v.

May not exist or may not be unique. (algorithm for computation is not that
easy.)
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