Basic Statistics 2

Class 2

Wonmun Shin

(wonmun.shin@sejong.ac.kr)

Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture note .

Probability Distributions

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- We have discussed properties of discrete and continuous random variables. Now, we are going to consider some important examples of discrete and continuous random variables.
- **Discrete probability distribution**: Bernoulli distribution, Binomial distribution, Hypergeometric distribution, Poisson distribution

• Continuous probability distribution

- Uniform distribution
- Exponential distribution
- Normal distribution
- χ^2 (chi-square) distribution
- t distribution
- F distribution

- The most important continuous distribution is the normal distribution which plays a central role in a very large body of statistical analysis. The pdf of normal distribution peaks at the mean and tails off at its extremities, which suggests a bell shape curve.
- Probability density function (pdf): bell-shaped and symmetric about its mean

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

We write

$$X \sim N(\mu, \sigma^2)$$

when the random variable X is normally distributed with mean μ and variance σ^2 .

イロン イ団 とく ヨン イヨン

Normal Distribution [cont'd]

- Some properties of $X \sim N\left(\mu, \sigma^2
 ight)$
 - $E(X) = \mu$ indicates the central location of the pdf.
 - $Var(X) = \sigma^2$ indicates the dispersion of the pdf.
 - It takes its maximum at μ.
- **Standard normal distribution**: the normal distribution with mean 0 and variance 1

$$X \sim N\left(\mu, \sigma^{2}\right)$$
$$\Longrightarrow Z = \frac{X - \mu}{\sigma} \sim N\left(0, 1\right)$$

• Standard normal distribution is very useful because the probability can be easily computed based on the *standard normal table*!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$V \sim \chi^2(d)$$

- Random variable V has the χ^2 (chi-square) distribution with d degrees of freedom.
- E(V) = d
- Var(V) = 2d
- If $Z_i \sim N(0,1)$ and Z_i 's are independent, then

$$V = Z_1^2 + Z_2^2 + \dots + Z_d^2 \sim \chi^2(d)$$

<ロ> <四> <四> <四> <三</p>

$$T \sim t(d)$$

- Random variable T has the t distribution with d degrees of freedom.
- The pdf is symmetric around 0 and bell-shaped (but it is more dispersed and has thicker tails than the pdf of N(0,1)).
- As the degree of freedom increases, the *t* distribution converges to the N(0, 1).
- If $Z \sim N(0,1)$, $V \sim \chi^2(d)$, and Z and V are independent, then

$$T = \frac{Z}{\sqrt{V/d}} \sim t(d)$$

$F \sim F(d_1, d_2)$

- Random variable F has the F distribution with degrees of freedom (d_1, d_2)
- The pdf is positively skewed and located over the range of positive numbers.
- If $V_1 \sim \chi^2\left(\mathit{d}_1
 ight)$, $V_2 \sim \chi^2\left(\mathit{d}_2
 ight)$, and V_1 and V_2 are independent, then

$$F = rac{V_1/d_1}{V_2/d_2} \sim F(d_1, d_2)$$

<ロ> <四> <四> <四> <三</p>

- The *sum* or *average* of a large number of *independent* random variables has a distribution close to normal, *regardless of the distribution* of the random variables.
- It allows us to make inferences about the true population parameters (for example, mean or variance) on the basis of the sample without knowing the true information about the population.
- Suppose that X_1, X_2, \dots, X_n are independent and identically distributed (i.i.d.) random variables.
 - The CLT says that, regardless of the common distribution of X_i's, the distribution of average of X (*i.e.*X) follows the normal distribution when *n* becomes large.
 - Again, the CLT do not require X_i's to be normal variables!

э

Parameter and Estimator

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- We want to know the properties of a large group of objects, given information on a relatively small subset of them.
 - The larger parent group is referred to as a **population**.
 - The subset of population is called a sample.
- "A sample should be representative of the population": Random sampling
 - A random sampling procedure is to select a sample of *n* objects from a population.
 - Random sample $\{X_1, X_2, \cdots, X_n\}$ from a population is a collection of random variables that are chosen from the same population distribution and are statistically independent.
 - *i.e.* X_i 's are *i.i.d.* for $i = 1, 2, \dots, n$

<ロ> <四> <四> <四> <三</p>

- **Parameter** θ : The unknown characteristic about which information is required
 - eg. $\theta=\mu$
- Estimator $\hat{\theta}$: A sample statistic whose realization provide approximation to the population parameter
 - eg. $\hat{\theta} = \bar{X}$
- Estimate: A specific numerical realization
 - eg. Let random sample: $\{X_1, X_2, X_3\}$, realization: $\{18, 19, 20\}$
 - μ : population parameter

•
$$\bar{X} = \frac{X_1 + X_2 + X_3}{3}$$
: (point) estimator of μ

• $\bar{X} = \frac{18+19+20}{3} = 19$: (point) estimate of μ

<ロ> <四> <四> <四> <三</p>

Properties of Estimator

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

1. Unbiasedness

• An estimator $\hat{\theta}$ is an unbiased estimator of θ if the mean of the sampling distribution is θ . *i.e.*

$$E\left(\hat{\theta}\right) = \theta$$

- Measure of unbiasedness: $\textit{Bias}\left(\hat{\theta}\right)=\textit{E}\left(\hat{\theta}\right)- heta$
- \therefore The bias of an unbiased estimator must be zero
- Example: $E(\bar{X}) = \mu$

• why?
$$E(\bar{X}) = E\left(\frac{\sum X_i}{n}\right) = \frac{1}{n} \cdot E\left(\sum X_i\right) = \frac{1}{n} \cdot E(X_1 + X_2 + \dots + X_n)$$
$$= \frac{1}{n} \cdot n \cdot \mu = \mu$$

• Bias $(\bar{X}) = E(\bar{X}) - \mu = \mu - \mu = 0$

э

2. Efficiency

• Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators. Then, $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$ if

Var
$$\left(\hat{ heta}_1
ight) <$$
 Var $\left(\hat{ heta}_2
ight)$

• Example:
$$Var(\bar{X}) = \frac{\sigma^2}{n}$$
, $Var(X_{Med}) = \frac{\pi}{2} \cdot \frac{\sigma^2}{n}$

• \bar{X} is a more efficient estimator than X_{Med} since

$$Var\left(ar{X}
ight)=rac{\sigma^{2}}{n}<rac{\pi}{2}\cdotrac{\sigma^{2}}{n}=Var\left(X_{Med}
ight)$$

イロン イ団 とく ヨン イヨン

- When the unbiased estimator is unsatisfactory because its variance is too big, we may sacrifice a little bias for the smaller variance.
- One particular measure of expected closeness is Mean Squared Error (MSE).
- The expectation of the squared difference between the estimator and the parameter:

$$MSE\left(\hat{\theta}
ight) = E\left[\left(\hat{ heta} - heta
ight)^{2}
ight] = Var\left(\hat{ heta}
ight) + \left[Bias\left(\hat{ heta}
ight)
ight]^{2}$$

3. Consistency: a large sample property

• An estimator $\hat{\theta}$ is a consistent estimator of θ if

$$\lim_{n\to\infty} P\left[\left|\hat{\theta}-\theta\right|<\epsilon\right]=1 \text{ for any } \epsilon>0$$

- That is, the larger the sample is, the higher probability that θ̂ lies close to θ (or, θ̂ converges in probability to θ).
- In other expression,

$$\hat{\theta} \stackrel{p}{\to} \theta$$
 or $p \lim_{n \to \infty} \hat{\theta} = \theta$

<u>Note</u> Sufficient condition of consistent estimator

$$p\lim_{n\to\infty}MSE\left(\hat{\theta}\right)=0$$

$$p\lim_{n\to\infty}MSE\left(\hat{\theta}\right)=0$$

•
$$\left[Bias\left(\hat{\theta}\right)
ight]^2 > 0$$
, $Var\left(\hat{\theta}\right) > 0$

•
$$\therefore$$
 MSE $(\hat{\theta}) \rightarrow 0$ iff *Bias* $(\hat{\theta}) \rightarrow 0$, *Var* $(\hat{\theta}) \rightarrow 0$.

• Example

• Bias
$$(\bar{X}) = E(\bar{X}) - \mu = 0$$

•
$$Var(\bar{X}) = \frac{\sigma^2}{n} \to 0$$
 as $n \to \infty$

• $\therefore \bar{X}$ is a consistent estimator of μ

æ

イロン イ団 とく ヨン イヨン

Hypothesis Testing

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Hypothesis

- We are often interested in using data in accessing the validity of some conjecture, or **hypothesis**.
- Generally, hypotheses are formed about the population parameter (θ) .
- Null hypothesis (*H*₀)
 - A hypothesis that is held to be true unless sufficient evidence to the contrary is obtained.
 - Therefore, we hold the null hypothesis to be true unless there is strong evidence that it is not.
 - (e.g.) $H_0: \theta = 70$
- Alternative Hypothesis (*H*₁)
 - A hypothesis against which the null hypothesis is tested and which is held to be true if the null is incorrect.
 - One-sided alternative: (e.g.) $H_1: \theta < 70$
 - Two-sided alternative: (e.g.) $H_1: \theta \neq 70$

Type I and Type II Error

• Type I error: Error of rejecting H_0 when H_0 is true.

$$P (Type \ I \ error) = size \ of \ test$$
$$= significance \ level$$
$$= \alpha$$

• **Type II error**: Error of not rejecting H_0 when H_0 is false.

 $P(\text{Type II error}) = \beta$

• Power:

$$1 - P$$
 (Type II error) = P (reject H_0 when H_0 is false)
= Power of test
= $1 - \beta$

æ

• Summary

- α: Size of test, Significance level
- 1β : Power

	H ₀ is True	H_0 is False
Don't reject (Accept) H ₀	Okay $(1-lpha)$	Type II error (β)
Reject H ₀	Type I error (α , Size)	Okay $(1 - \beta, Power)$

- α and β are inversely related: the smaller α we choose, the larger β will be.
- The only way of lowering both error would be to obtain more information about the true parameter.
- Conventionally, α is chosen to a small number ($\alpha = 0.10, 0.05$, or 0.01).

イロン イ団 とく ヨン イヨン

Steps of Hypothesis Testing

- [Step 1] Set the hypothesis
 - Specify H₀ and H₁.
- [Step 2] Test statistic
 - Figure out a distribution of estimator.
 - Compute a test statistic.
- [Step 3] Set the rejection region
 - Choose a significance level.
 - Compute the critical value.
 - Then, set the rejection area.
- [Step 4] Decision
 - Decide whether to reject or do not reject H_0 .

(日) (同) (日) (日)