## Basic Statistics 2

Class 2

Wonmun Shin<br>(wonmun.shin@sejong.ac.kr)<br>Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture note .


## Probability Distributions

## Probability Distributions

- We have discussed properties of discrete and continuous random variables. Now, we are going to consider some important examples of discrete and continuous random variables.
- Discrete probability distribution: Bernoulli distribution, Binomial distribution, Hypergeometric distribution, Poisson distribution
- Continuous probability distribution
- Uniform distribution
- Exponential distribution
- Normal distribution
- $\chi^{2}$ (chi-square) distribution
- $t$ distribution
- F distribution


## Normal Distribution

- The most important continuous distribution is the normal distribution which plays a central role in a very large body of statistical analysis. The pdf of normal distribution peaks at the mean and tails off at its extremities, which suggests a bell shape curve.
- Probability density function (pdf): bell-shaped and symmetric about its mean

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We write

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

when the random variable $X$ is normally distributed with mean $\mu$ and variance $\sigma^{2}$.

## Normal Distribution [cont'd]

- Some properties of $X \sim N\left(\mu, \sigma^{2}\right)$
- $E(X)=\mu$ indicates the central location of the pdf.
- $\operatorname{Var}(X)=\sigma^{2}$ indicates the dispersion of the pdf.
- It takes its maximum at $\mu$.
- Standard normal distribution: the normal distribution with mean 0 and variance 1

$$
\begin{aligned}
X & \sim N\left(\mu, \sigma^{2}\right) \\
\Longrightarrow Z=\frac{X-\mu}{\sigma} & \sim N(0,1)
\end{aligned}
$$

- Standard normal distribution is very useful because the probability can be easily computed based on the standard normal table!


## $\chi^{2}$ Distribution

$$
V \sim \chi^{2}(d)
$$

- Random variable $V$ has the $\chi^{2}$ (chi-square) distribution with $d$ degrees of freedom.
- $E(V)=d$
- $\operatorname{Var}(V)=2 d$
- If $Z_{i} \sim N(0,1)$ and $Z_{i}$ 's are independent, then

$$
V=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{d}^{2} \sim \chi^{2}(d)
$$

## $t$ Distribution

$$
T \sim t(d)
$$

- Random variable $T$ has the $t$ distribution with $d$ degrees of freedom.
- The pdf is symmetric around 0 and bell-shaped (but it is more dispersed and has thicker tails than the pdf of $N(0,1)$ ).
- As the degree of freedom increases, the $t$ distribution converges to the $N(0,1)$.
- If $Z \sim N(0,1), V \sim \chi^{2}(d)$, and $Z$ and $V$ are independent, then

$$
T=\frac{Z}{\sqrt{V / d}} \sim t(d)
$$

## F Distribution

$$
F \sim F\left(d_{1}, d_{2}\right)
$$

- Random variable $F$ has the $F$ distribution with degrees of freedom $\left(d_{1}, d_{2}\right)$
- The pdf is positively skewed and located over the range of positive numbers.
- If $V_{1} \sim \chi^{2}\left(d_{1}\right), V_{2} \sim \chi^{2}\left(d_{2}\right)$, and $V_{1}$ and $V_{2}$ are independent, then

$$
F=\frac{V_{1} / d_{1}}{V_{2} / d_{2}} \sim F\left(d_{1}, d_{2}\right)
$$

## Central Limit Theorem (CLT)

- The sum or average of a large number of independent random variables has a distribution close to normal, regardless of the distribution of the random variables.
- It allows us to make inferences about the true population parameters (for example, mean or variance) on the basis of the sample without knowing the true information about the population.
- Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are independent and identically distributed (i.i.d.) random variables.
- The CLT says that, regardless of the common distribution of $X_{i}$ 's, the distribution of average of $X$ (i.e. $\bar{X}$ ) follows the normal distribution when $n$ becomes large.
- Again, the CLT do not require $X_{i}$ 's to be normal variables!


## Parameter and Estimator

## Population and Sample

- We want to know the properties of a large group of objects, given information on a relatively small subset of them.
- The larger parent group is referred to as a population.
- The subset of population is called a sample.
- "A sample should be representative of the population": Random sampling
- A random sampling procedure is to select a sample of $n$ objects from a population.
- Random sample $\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ from a population is a collection of random variables that are chosen from the same population distribution and are statistically independent.
- i.e. $X_{i}$ 's are i.i.d. for $i=1,2, \cdots, n$


## Parameter and Estimator

- Parameter $\theta$ : The unknown characteristic about which information is required
- eg. $\theta=\mu$
- Estimator $\hat{\theta}$ : A sample statistic whose realization provide approximation to the population parameter
- eg. $\hat{\theta}=\bar{X}$
- Estimate: A specific numerical realization
- eg. Let random sample: $\left\{X_{1}, X_{2}, X_{3}\right\}$, realization: $\{18,19,20\}$
- $\mu$ : population parameter
- $\bar{X}=\frac{X_{1}+X_{2}+X_{3}}{3}$ : (point) estimator of $\mu$
- $\bar{X}=\frac{18+19+20}{3}=19:($ point ) estimate of $\mu$


## Properties of Estimator

## Properties of Estimator: Unbiasedness

## 1. Unbiasedness

- An estimator $\hat{\theta}$ is an unbiased estimator of $\theta$ if the mean of the sampling distribution is $\theta$. i.e.

$$
E(\hat{\theta})=\theta
$$

- Measure of unbiasedness: $\operatorname{Bias}(\hat{\theta})=E(\hat{\theta})-\theta$
- $\therefore$ The bias of an unbiased estimator must be zero
- Example: $E(\bar{X})=\mu$
- why? $E(\bar{X})=E\left(\frac{\sum X_{i}}{n}\right)=\frac{1}{n} \cdot E\left(\sum X_{i}\right)=\frac{1}{n} \cdot E\left(X_{1}+X_{2}+\cdots+X_{n}\right)$

$$
=\frac{1}{n} \cdot n \cdot \mu=\mu
$$

- $\operatorname{Bias}(\bar{X})=E(\bar{X})-\mu=\mu-\mu=0$


## Properties of Estimator: Efficiency

## 2. Efficiency

- Let $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ be two unbiased estimators. Then, $\hat{\theta}_{1}$ is more efficient than $\hat{\theta}_{2}$ if

$$
\operatorname{Var}\left(\hat{\theta}_{1}\right)<\operatorname{Var}\left(\hat{\theta}_{2}\right)
$$

- Example: $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}, \operatorname{Var}\left(X_{\text {Med }}\right)=\frac{\pi}{2} \cdot \frac{\sigma^{2}}{n}$
- $\bar{X}$ is a more efficient estimator than $X_{\text {Med }}$ since

$$
\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}<\frac{\pi}{2} \cdot \frac{\sigma^{2}}{n}=\operatorname{Var}\left(X_{\text {Med }}\right)
$$

## Mean Squared Error (MSE)

- When the unbiased estimator is unsatisfactory because its variance is too big, we may sacrifice a little bias for the smaller variance.
- One particular measure of expected closeness is Mean Squared Error (MSE).
- The expectation of the squared difference between the estimator and the parameter:

$$
\operatorname{MSE}(\hat{\theta})=E\left[(\hat{\theta}-\theta)^{2}\right]=\operatorname{Var}(\hat{\theta})+[\operatorname{Bias}(\hat{\theta})]^{2}
$$

## Properties of Estimator: Consistency

3. Consistency: a large sample property

- An estimator $\hat{\theta}$ is a consistent estimator of $\theta$ if

$$
\lim _{n \rightarrow \infty} P[|\hat{\theta}-\theta|<\epsilon]=1 \text { for any } \epsilon>0
$$

- That is, the larger the sample is, the higher probability that $\hat{\theta}$ lies close to $\theta$ (or, $\hat{\theta}$ converges in probability to $\theta$ ).
- In other expression,

$$
\hat{\theta} \xrightarrow{p} \theta \quad \text { or } \quad p \lim _{n \rightarrow \infty} \hat{\theta}=\theta
$$

- Note Sufficient condition of consistent estimator

$$
p \lim _{n \rightarrow \infty} \operatorname{MSE}(\hat{\theta})=0
$$

## Properties of Estimator: Consistency

$$
p \lim _{n \rightarrow \infty} \operatorname{MSE}(\hat{\theta})=0
$$

- $[\operatorname{Bias}(\hat{\theta})]^{2}>0, \operatorname{Var}(\hat{\theta})>0$
- $\therefore \operatorname{MSE}(\hat{\theta}) \rightarrow 0$ iff Bias $(\hat{\theta}) \rightarrow 0, \operatorname{Var}(\hat{\theta}) \rightarrow 0$.
- Example
- $\operatorname{Bias}(\bar{X})=E(\bar{X})-\mu=0$
- $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n} \rightarrow 0$ as $n \rightarrow \infty$
- $\therefore \bar{X}$ is a consistent estimator of $\mu$


## Hypothesis Testing

[^0]
## Hypothesis

- We are often interested in using data in accessing the validity of some conjecture, or hypothesis.
- Generally, hypotheses are formed about the population parameter $(\theta)$.
- Null hypothesis $\left(H_{0}\right)$
- A hypothesis that is held to be true unless sufficient evidence to the contrary is obtained.
- Therefore, we hold the null hypothesis to be true unless there is strong evidence that it is not.
- (e.g.) $H_{0}: \theta=70$
- Alternative Hypothesis $\left(H_{1}\right)$
- A hypothesis against which the null hypothesis is tested and which is held to be true if the null is incorrect.
- One-sided alternative: (e.g.) $H_{1}: \theta<70$
- Two-sided alternative: (e.g.) $H_{1}: \theta \neq 70$


## Type I and Type II Error

- Type I error: Error of rejecting $H_{0}$ when $H_{0}$ is true.

$$
\begin{aligned}
P(\text { Type I error }) & =\text { size of test } \\
& =\text { significance level } \\
& =\alpha
\end{aligned}
$$

- Type II error: Error of not rejecting $H_{0}$ when $H_{0}$ is false.

$$
P(\text { Type II error })=\beta
$$

- Power:

$$
\begin{aligned}
1-P(\text { Type II error }) & =P\left(\text { reject } H_{0} \text { when } H_{0} \text { is false }\right) \\
& =\text { Power of test } \\
& =1-\beta
\end{aligned}
$$

## Type I and Type II Error [cont'd]

- Summary
- $\alpha$ : Size of test, Significance level
- 1 - $\beta$ : Power

|  | $H_{0}$ is True | $H_{0}$ is False |
| :---: | :---: | :---: |
| Don't reject $($ Accept $) H_{0}$ | Okay $(1-\alpha)$ | Type II error $(\beta)$ |
| Reject $H_{0}$ | Type I error $(\alpha$, Size $)$ | Okay $(1-\beta$, Power $)$ |

- $\alpha$ and $\beta$ are inversely related: the smaller $\alpha$ we choose, the larger $\beta$ will be.
- The only way of lowering both error would be to obtain more information about the true parameter.
- Conventionally, $\alpha$ is chosen to a small number ( $\alpha=0.10,0.05$, or 0.01 ).


## Steps of Hypothesis Testing

- [Step 1] Set the hypothesis
- Specify $H_{0}$ and $H_{1}$.
- [Step 2] Test statistic
- Figure out a distribution of estimator.
- Compute a test statistic.
- [Step 3] Set the rejection region
- Choose a significance level.
- Compute the critical value.
- Then, set the rejection area.
- [Step 4] Decision
- Decide whether to reject or do not reject $H_{0}$.


[^0]:    

