Basic Statistics 1

Class 1

Wonmun Shin
(wonmun.shin@sejong.ac.kr)
Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture note .

Random Variables

Random Variables

- Random variable (r.v.): a variable whose numerical value is determined by the outcome of a random experiment
- Discrete random variable: can take on finite or countably infinite number of values
- Continuous random variable: can take any value in an interval
- Probability Density Function (pdf)
- Suppose that X is a discrete r.v. and the x is one of its possible values.
- Denote $P(X=x)$ as the probability that the r.v. takes the specific value x.
- Then, the discrete r.v. has a probability density function (pdf) which represents the probabilities for all the possible outcomes.

$$
f(x)= \begin{cases}P\left(X=x_{i}\right) & \text { for } i=1,2,3, \cdots, n, \cdots \\ 0 & \text { for } X \neq x_{i}\end{cases}
$$

Random Variables [cont'd]

- Properties
(1) $P\left(X=x_{i}\right) \geq 0$ for $i=1,2, \cdots, n, \cdots$
(2) $\sum_{x} f(x)=1$
- Then, what if X is a continuous variable?
- $f(x)$ is a pdf of a continuous r.v. X if

$$
\begin{gathered}
f(x) \geq 0 \\
\int_{-\infty}^{\infty} f(x) d x=1 \\
\int_{a}^{b} f(x) d x=P(a \leq x \leq b)
\end{gathered}
$$

- Note $P(X=a)=\int_{a}^{a} f(x) d x=0$

Mean and Variance

Expected Values (Expectation)

- The probability distribution contains all the information about the r.v., but in some cases it is desirable to have some numerical summary measures of the distribution's characteristics such as mean and variance.
- Definition of $E(X)$
- Expected value of a r.v. $X=$ Mean of $X=$ First moment of X
- Measure of central location of X
- Average of values that X can take, weighted by corresponding probabilities
- Discrete r.v. case

$$
\mu=E(X)=\sum_{x} x f(x)
$$

- Continuous r.v. case

$$
\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

Expected Values (Expectation) [cont'd]

- Useful results
- $E(a)=a$
- Why? $E(a)=\sum_{x} a f(x)=a \underbrace{\sum_{x} f(x)}_{=1}=a$
- $E(a X)=a E(X)$
- Why? $E(a X)=\sum_{x}(a x) f(x)=a \underbrace{\sum_{x} x f(x)}_{=E(X)}=a E(X)$
- $E(a X+b)=a E(X)+b$
- Why? $E(a X+b)=\sum_{x}(a x+b) f(x)=a \underbrace{\sum_{x} x f(x)}_{=E(X)}+b \underbrace{\sum_{x} f(x)}_{=1}=a E(X)+b$

Variance (and Standard Deviation)

- We can consider the measure of dispersion in the pdf of a r.v.. This is a weighed average of the squared discrepancy about the mean.
- Definition of $\operatorname{Var}(X)$
- Variance of a r.v. $X=$ Second moment of X
- Measure of dispersion of X around $E(X)$

$$
\sigma^{2}=\operatorname{Var}(X)=E(X-\mu)^{2}
$$

- Standard deviation $=\sigma=\sqrt{\operatorname{Var}(X)}$

Variance (and Standard Deviation) [contd]

- Alternative (and useful) expression

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}
$$

- Why?

$$
\begin{aligned}
E(X-\mu)^{2} & =E\left(X^{2}-2 \mu X+\mu^{2}\right)=\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) f(x) \\
& =\sum_{x} x^{2} f(x)+\sum_{x}(-2 \mu x) f(x)+\sum_{x} \mu^{2} f(x) \\
& =E\left(X^{2}\right)-2 \mu E(X)+\mu^{2} \\
& =E\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

Variance (and Standard Deviation) [contd]

- Useful results
- $\operatorname{Var}(a)=0$
- Why?

$$
\operatorname{Var}(a)=E\left(a^{2}\right)-[E(a)]^{2}=a^{2}-a^{2}=0
$$

- $\operatorname{Var}(X+a)=\operatorname{Var}(X)$
- Why?

$$
\begin{aligned}
\operatorname{Var}(X+a) & =E\left[(X+a)^{2}\right]-[E(X+a)]^{2} \\
& =E\left(X^{2}+2 a X+a^{2}\right)-\left[\mu^{2}+2 a \mu+a^{2}\right] \\
& =E\left(X^{2}\right)+2 a E(X)+a^{2}-\mu^{2}-2 a \mu-a^{2} \\
& =E\left(X^{2}\right)+2 a \mu+a^{2}-\mu^{2}-2 a \mu-a^{2} \\
& =E\left(X^{2}\right)-\mu^{2}=\operatorname{Var}(X)
\end{aligned}
$$

Variance (and Standard Deviation) [contd]

- Useful results [Cont'd]
- Var $(a X+b)=a^{2} \operatorname{Var}(X)$
- Why?

$$
\begin{aligned}
\operatorname{Var}(a X+b) & =\operatorname{Var}(a X) \\
& =E\left(a^{2} X^{2}\right)-[E(a X)]^{2} \\
& =a^{2} E\left(X^{2}\right)-(a \mu)^{2} \\
& =a^{2}\left[E\left(X^{2}\right)-\mu^{2}\right] \\
& =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

Covariance

Two Random Variables

- Suppose that X and Y are random variables.

$$
\begin{gathered}
E(X \pm Y)=E(X) \pm E(Y) \\
E(a X \pm b Y)=a E(X) \pm b E(Y) \\
\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \pm 2 \cdot \operatorname{Cov}(X, Y) \\
\operatorname{Var}(a X \pm b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y) \pm 2 a b \cdot \operatorname{Cov}(X, Y)
\end{gathered}
$$

Covariance

- What is $\operatorname{Cov}(X, Y)$?
- Covariance measures the linear relationship between two random variables. For example, we can check whether higher values of X are associated with higher values of Y or not.
$\sigma_{X Y}=\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]=E(X Y)-E(X) E(Y)$
- Positive $\sigma_{X Y}$: High values of X tend to be associated with high values of Y.
- Negative $\sigma_{X Y}$: High values of X tend to be associated with low values of Y.
- $\sigma_{X Y}=0$: No linear relationship (possible non-linear relationship)
- Note Existence of covariance does NOT imply any causality between two.

Correlation Coefficient

- Correlation coefficient

- Since the magnitude of covariance does not tell us the degree of strength of linear dependence, we need to normalize the value of the covariance by dividing variances of X and Y.

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \cdot \sqrt{\operatorname{Var}(Y)}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

$$
-1 \leq \rho_{X Y} \leq 1
$$

Independence

- If X and Y are independent,

$$
E(X Y)=E(X) E(Y)
$$

- Why?

$$
\begin{aligned}
E(X Y) & =\sum_{x} \sum_{y} x y \underbrace{f_{x y}(x, y)}_{\text {joint pdf }} \\
& =\sum_{x} \sum_{y} x y f(x) f(y) \\
& =\sum_{x} x f(x) \sum_{y} y f(y) \\
& =E(X) E(Y)
\end{aligned}
$$

- Therefore, when X and Y are independent,

$$
\operatorname{Cov}(X, Y)=0
$$

- Note The converse is not necessarily true. That is, $\operatorname{Cov}(X, Y)=0$ does not always imply X and Y are independent.

