Random Regressors

Class 12

Wonmun Shin (wonmun.shin@sejong.ac.kr)

Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture notes.

Random Regressors

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- Recall the classical assumptions in the simple regression model:
 - (A1) Independent variable (X) is not random but deterministic.
 - (A2) $E(e_i) = 0$
 - (A3) $Var(e_i) = \sigma^2$ Homoskedasticity
 - (A4) $Cov(e_i, e_j) = 0$ for $i \neq j$ No Autocorrelation
- We do not allow randomness in the regressors, which is obviously a restrictive assumption.
 - (A1) is clearly not realistic in many economic models, but we use this for mathematical simplicity.

イロト イロト イヨト イヨト 二日 二

- However, even if we allow stochastic regressors, the properties of the OLS estimator still hold under slightly modified assumptions.
 - (A1)' $Cov(X_i, e_i) = 0$ No correlation between X_i and e_i
 - (A2)' $E(e_i \mid X_i) = 0$
 - (A3)' Var $(e_i | X_i) = \sigma^2$ Homoskedasticity
 - (A4)' Cov $(e_i, e_j | X_i, X_j) = 0$ for $i \neq j$ No Autocorrelation

イロン イボン イヨン イヨン 三日

Endogeneity Issue and IV Regression

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- When X_i is random, it might be possible that X_i is correlated with the error term (e_i) → Cov (X_i, e_i) ≠ 0
- Example: earning (Y) and years of schooling (X)

$$Y_i = \beta_1 + \beta_2 X_i + e_i$$

- *e_i* embodies all factors other than schooling that determines earnings, such as <u>*ability*!</u>
- Ability affects earnings as well as years of schooling. \rightarrow There is an association between X and e!

<ロ> <四> <四> <四> <三</p>

Endogeneity Issue [cont'd]

- **Q.** What are the consequence of the correlation between X and e?
 - Higher levels of X have two effect on Y!
 - Direct effect : $\beta_2 X_i$
 - Indirect effect : e affecting X, which in turn affects Y
 - The goal of regression is to estimate only the first effect, yielding an estimate of β₂.
 - But, the OLS estimate will combine two effects!

$$Y = \beta_1 + \beta_2 X + e(X)$$

$$\Rightarrow \quad \frac{dY}{dX} = \beta_2 + \frac{de}{dX}$$

- The OLS estimate lets us know the total effect $\beta_2 + de/dX$ rather than β_2 alone.
- A. The OLS estimator is **biased** and **inconsistent**!

- When X_i is endogenous, there may be an association between regressor and error. → Cov (X_i, e_i) ≠ 0
 - Source of endogeneity: measurement error in X, omitted-variable bias, reverse causality, · · · .

Endogeneity Issue

- Without (A1)', the OLS estimator is not unbiased and not consistent.
- That is, the OLS estimator does not converge to the true parameter even in a very large sample.
- Moreover, none of usual testings and estimations are valid in this case.

Instrumental Variable (IV) Estimation

- Problems for OLS arises when X is random and correlated with the error, so that $Cov(X_i, e_i) \neq 0$.
- Suppose there exists another variable, say Z_i , which satisfies

 $Cov(Z_i, e_i) = 0$ (Exogeneity) $Cov(Z_i, X_i) \neq 0$ (Relevance)

- Z_i is called **instrumental variable** (IV), or "instrument".
- **Example:** earning (*Y*) and years of schooling (*X*)
 - Card (1995) : Proximity to college or university (Z)
 - Angrist and Krueger (1991) : Month of birth (Z)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Instrumental Variable (IV) Estimation [cont'd]

IV estimator

$$\hat{\beta}_{2}^{IV} = \frac{\Sigma\left(Z_{i} - \bar{Z}\right)\left(Y_{i} - \bar{Y}\right)}{\Sigma\left(Z_{i} - \bar{Z}\right)\left(X_{i} - \bar{X}\right)} = \frac{\Sigma z_{i} y_{i}}{\Sigma z_{i} x_{i}}$$

• where $z_i = Z_i - \overline{Z}$, $x_i = X_i - \overline{X}$, and $y_i = Y_i - \overline{Y}$

- IV estimators are consistent estimators (but, not unbiased and not efficient).
- **Example:** earning (*Y*) and years of schooling (*X*)
 - Suppose one unit change in Z is associated with 0.2 more years of schooling and with a \$500 increase in annual earnings.
 - Then, a one year increase in X is associated with 500/0.2 = 2,500 increase in Y.

$$\beta_2^{IV} = \frac{dY/dZ}{dX/dZ}$$

<ロ> <四> <四> <四> <三</p>

Instrumental Variable (IV) Estimation [cont'd]

$$\hat{\beta}_{2}^{IV} = \frac{\frac{\sum z_{i}y_{i}}{\sum z_{i}^{2}}}{\frac{\sum z_{i}x_{i}}{\sum z_{i}^{2}}} = \frac{\sum z_{i}y_{i}}{\sum z_{i}x_{i}}$$

- In practice, it is often estimated by the two-stage least squares (2SLS).
 - [1st stage] Regress X on Z o Obtain \hat{X}
 - [2nd stage] Regress Y on $\hat{X}
 ightarrow$ Obtain \hat{eta}_2^{IV}