Random Regressors

Class 12

Wonmun Shin
(wonmun.shin@sejong.ac.kr)
Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture notes.

Random Regressors

Random Regressors

- Recall the classical assumptions in the simple regression model:
- (A1) Independent variable (X) is not random but deterministic.
- (A2) $E\left(e_{i}\right)=0$
- (A3) $\operatorname{Var}\left(e_{i}\right)=\sigma^{2} \quad$ Homoskedasticity
- (A4) $\operatorname{Cov}\left(e_{i}, e_{j}\right)=0$ for $i \neq j \quad$ No Autocorrelation
- We do not allow randomness in the regressors, which is obviously a restrictive assumption.
- (A1) is clearly not realistic in many economic models, but we use this for mathematical simplicity.

Random Regressors [cont'd]

- However, even if we allow stochastic regressors, the properties of the OLS estimator still hold under slightly modified assumptions.
- (A1)' $\operatorname{Cov}\left(X_{i}, e_{i}\right)=0 \quad$ No correlation between X_{i} and e_{i}
- (A2)' $E\left(e_{i} \mid X_{i}\right)=0$
- (A3)' $\operatorname{Var}\left(e_{i} \mid X_{i}\right)=\sigma^{2} \quad$ Homoskedasticity
- (A4)' $\operatorname{Cov}\left(e_{i}, e_{j} \mid X_{i}, X_{j}\right)=0$ for $i \neq j \quad$ No Autocorrelation

Endogeneity Issue and IV Regression

Endogeneity Issue

- When X_{i} is random, it might be possible that X_{i} is correlated with the error term $\left(e_{i}\right) \rightarrow \operatorname{Cov}\left(X_{i}, e_{i}\right) \neq 0$
- Example: earning (Y) and years of schooling (X)

$$
Y_{i}=\beta_{1}+\beta_{2} X_{i}+e_{i}
$$

- e_{i} embodies all factors other than schooling that determines earnings, such as ability!
- Ability affects earnings as well as years of schooling. \rightarrow There is an association between X and e!

Endogeneity Issue [cont'd]

Q. What are the consequence of the correlation between X and e ?

- Higher levels of X have two effect on Y !
- Direct effect : $\beta_{2} X_{i}$
- Indirect effect : e affecting X, which in turn affects Y
- The goal of regression is to estimate only the first effect, yielding an estimate of β_{2}.
- But, the OLS estimate will combine two effects!

$$
\begin{aligned}
Y & =\beta_{1}+\beta_{2} X+e(X) \\
\Rightarrow & \frac{d Y}{d X}=\beta_{2}+\frac{d e}{d X}
\end{aligned}
$$

- The OLS estimate lets us know the total effect $\beta_{2}+d e / d X$ rather than β_{2} alone.
A. The OLS estimator is biased and inconsistent!

Endogeneity Issue [cont'd]

- When X_{i} is endogenous, there may be an association between regressor and error. $\rightarrow \operatorname{Cov}\left(X_{i}, e_{i}\right) \neq 0$
- Source of endogeneity: measurement error in X, omitted-variable bias, reverse causality, \cdots.
- Endogeneity Issue
- Without (A1)', the OLS estimator is not unbiased and not consistent.
- That is, the OLS estimator does not converge to the true parameter even in a very large sample.
- Moreover, none of usual testings and estimations are valid in this case.

Instrumental Variable (IV) Estimation

- Problems for OLS arises when X is random and correlated with the error, so that $\operatorname{Cov}\left(X_{i}, e_{i}\right) \neq 0$.
- Suppose there exists another variable, say Z_{i}, which satisfies

$$
\begin{array}{ll}
\operatorname{Cov}\left(Z_{i}, e_{i}\right)=0 & (\text { Exogeneity }) \\
\operatorname{Cov}\left(Z_{i}, X_{i}\right) \neq 0 & (\text { Relevance })
\end{array}
$$

- Z_{i} is called instrumental variable (IV), or "instrument".
- Example: earning (Y) and years of schooling (X)
- Card (1995) : Proximity to college or university (Z)
- Angrist and Krueger (1991) : Month of birth (Z)

Instrumental Variable (IV) Estimation [cont'd]

- IV estimator

$$
\hat{\beta}_{2}^{\prime V}=\frac{\Sigma\left(Z_{i}-\bar{Z}\right)\left(Y_{i}-\bar{Y}\right)}{\Sigma\left(Z_{i}-\bar{Z}\right)\left(X_{i}-\bar{X}\right)}=\frac{\Sigma z_{i} y_{i}}{\sum z_{i} x_{i}}
$$

- where $z_{i}=Z_{i}-\bar{Z}, x_{i}=X_{i}-\bar{X}$, and $y_{i}=Y_{i}-\bar{Y}$
- IV estimators are consistent estimators (but, not unbiased and not efficient).
- Example: earning (Y) and years of schooling (X)
- Suppose one unit change in Z is associated with 0.2 more years of schooling and with a $\$ 500$ increase in annual earnings.
- Then, a one year increase in X is associated with $\$ 500 / 0.2=\$ 2,500$ increase in Y.

$$
\beta_{2}^{I V}=\frac{d Y / d Z}{d X / d Z}
$$

Instrumental Variable (IV) Estimation [cont'd]

- In practice, it is often estimated by the two-stage least squares (2SLS).
- [1st stage] Regress X on $Z \rightarrow$ Obtain \hat{X}
- [2nd stage] Regress Y on $\hat{X} \rightarrow$ Obtain $\hat{\beta}_{2}^{\prime V}$

