Multicollinearity

Class 11

Wonmun Shin
(wonmun.shin@sejong.ac.kr)
Department of Economics, Sejong University

* This lecture note is written based on Professor Chang Sik Kim's lecture notes.

Perfect Multicollinearity

Perfect Multicollinearity

- Perfect multicollinearity: Existence of exact linear relationship(s) among independent variables
- For the K-variable regression involving explanatory variables $X_{1 i}, X_{2 i}, \cdots, X_{K i}$ (where $X_{1 i}=1$ for all i to allow for the intercept term), an exact linear relationship is said to exist if the following condition is satisfied:

$$
\lambda_{1} X_{1 i}+\lambda_{2} X_{2 i}+\cdots+\lambda_{K} X_{K i}=0
$$

where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{K}$ are constants such that not all of them are zero simultaneously.

- Assume that $\lambda_{2} \neq 0$, then

$$
X_{2 i}=-\frac{\lambda_{1}}{\lambda_{2}} X_{1 i}-\frac{\lambda_{3}}{\lambda_{2}} X_{3 i}-\cdots-\frac{\lambda_{K}}{\lambda_{2}} X_{K i}
$$

Perfect Multicollinearity [cont'd]

- Consider the three variable model: $Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i}$
- Suppose $X_{2 i}=3 X_{3 i}$, which means there is exact linear relationship between $X_{2 i}$ and $X_{3 i}$.
- Then,

$$
\begin{aligned}
Y_{i} & =\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i} \\
& =\beta_{1}+\beta_{2}\left(3 X_{3 i}\right)+\beta_{3} X_{3 i}+e_{i} \\
& =\beta_{1}+\left(3 \beta_{2}+\beta_{3}\right) X_{3 i}+e_{i}
\end{aligned}
$$

- Now, we cannot estimate either β_{2} and β_{3} separately!!
- We can estimate only the linear combination of two coefficients, i.e. $3 \widehat{\beta_{2}+\beta_{3}}$.
- There is no unique value for $\hat{\beta}_{2}$ (or $\hat{\beta}_{3}$).
- This problem is usually called as Identification Problem.

Perfect Multicollinearity [cont'd]

- Recall the OLS estimator in the three-variable regression model:

$$
\hat{\beta}_{2}=\frac{\sum x_{2 i} y_{i} \sum x_{3 i}^{2}-\sum x_{3 i} y_{i} \sum x_{2 i} x_{3 i}}{\sum x_{2 i}^{2} \sum x_{3 i}^{2}-\left(\sum x_{2 i} x_{3 i}\right)^{2}}
$$

- Suppose that $X_{2 i}=3 X_{3 i} \Longrightarrow$ indeterminate expression

$$
\hat{\beta}_{2}=\frac{3 \sum x_{3 i} y_{i} \sum x_{3 i}^{2}-3 \sum x_{3 i} y_{i} \sum x_{3 i}^{2}}{3^{2} \sum x_{3 i}^{2} \sum x_{3 i}^{2}-\left(3 \sum x_{3 i}^{2}\right)^{2}}=\frac{0}{0}
$$

- Why do we obtain this result?
- Meaning of $\hat{\beta}_{2}$: The rate of change in the average value of Y as X_{2} changes by a unit, holding X_{3} constant
- But if X_{2} and X_{3} are perfectly collinear, there is no way X_{3} can be kept constant.
- As X_{2} changes, so does X_{3} by 3: There is no way of disentangling the separate influences of X_{2} and X_{3} from the given sample.

Near Multicollinearity

Near Multicollinearity

- Originally, multicollinearity meant the existence of a perfect linear relationship among regressors.
- Today, however, the term multicollinearity is used in a broader sense.
- Includes the case of perfect multicollinearity as well as the case where the X variables are intercorrelated but not perfectly.

$$
\lambda_{1} X_{1 i}+\lambda_{2} X_{2 i}+\cdots+\lambda_{K} X_{K i}+v_{i}=0
$$

where v_{i} is a stochastic error term.

- Assume that $\lambda_{2} \neq 0$, then

$$
x_{2 i}=-\frac{\lambda_{1}}{\lambda_{2}} x_{1 i}-\frac{\lambda_{3}}{\lambda_{2}} x_{3 i}-\cdots-\frac{\lambda_{K}}{\lambda_{2}} x_{K i}-\frac{1}{\lambda_{2}} v_{i}
$$

which shows that X_{2} is not an exact linear combination of other X 's because it is also determined by the stochastic error term v_{i}.

Near Multicollinearity [cont'd]

$X_{2 i}$	$X_{3 i}$	$X_{3 i}^{*}$
10	50	52
15	75	75
18	90	97
24	120	129
30	150	152

- $X_{3 i}=5 X_{2 i}$: There is perfect multicollinearity between X_{2} and $X_{3} .\left(r_{23}=1\right)$
- $X_{3 i}^{*}$ was created from X_{3} by simply adding the random numbers to it .
- Now there is no longer perfect multicollinearity between $X_{2 i}$ and $X_{3 i}^{*}$.
- However, the two variables are highly correlated! ($\left.r_{23^{*}}=0.9959\right)$
- In this case, there is Near (Perfect) Multicollinearity (or High but Imperfect Multicollinearity).

Near Multicollinearity [contd]

- Practical example:

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i}
$$

- Y_{i} : consumption expenditure
- $X_{2 i}$: income
- $X_{3 i}$: wealth
- $X_{3 i}$ may have close positive relationship with $X_{2 i}$!

Consequences of Multicollinearity

Consequences of Multicollinearity

1. Although BLUE, the OLS estimators may have large variances.

- (Near) multicollinearity does not violate the classical assumptions.
- Gauss-Markov Theorem \Rightarrow OLS estimators are BLUE!
- However, they have large variances, making precise estimation difficult.
- For the three-variable regression model, we can obtain

$$
\operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{\sum x_{2 i}^{2}\left(1-r_{23}^{2}\right)}
$$

- As r_{23} tends toward 1 or -1 (i.e. as collinearity increases), the variance of $\hat{\beta}_{2}$ increases.
- Extremely, when $r_{23}=1($ or -1$), \operatorname{Var}\left(\hat{\beta}_{2}\right)$ is infinite $(\rightarrow$ identification problem).

Consequences of Multicollinearity [conted]

2. Insignificant t ratios

- Because of large variance (Consequence 1), the t ratio of one or more coefficients tends to be statistically insignificant.
- Recall, to test $H_{0}: \beta_{2}=0$, we use the t ratio.

$$
t=\frac{\hat{\beta}_{2}}{\text { s.e. }\left(\hat{\beta}_{2}\right)}
$$

- As we have seen, in cases of high collinearity, the estimated standard errors increase dramatically.
- Therefore, t value becomes smaller \longrightarrow One will increasingly accept the null hypothesis!
- Probability of Type II error increases (or low power of test).
- cf. Type II error: Error of not rejecting H_{0} when H_{0} is false.

3. Wider confidence interval

Consequences of Multicollinearity [conted]

4. Significant F ratio but few significant t ratios

- Although the t ratio of one or more coefficients is statistically insignificant, R^{2} (overall measure of goodness of fit) can be very high.
- Consider the K-variable linear regression model:

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}+e_{i}
$$

- F-test of overall significance of coefficients: $H_{0}: \beta_{2}=\cdots=\beta_{K}=0$

$$
F=\frac{R^{2}}{1-R^{2}} \cdot \frac{n-K}{K-1} \sim F(K-1, n-K)
$$

- F can be very large even if individual t ratio is insignificant!
- Under multicollinearity, explanatory variables can be jointly significant even if each of them is individually insignificant.
- Remember the distinction between a joint test and an individual test.

5. OLS estimators and their standard errors may be sensitive to small changes in the data.

Detection and Remedies of Multicollinearity

Detection of Multicollinearity

- How do we know that multicollinearity is present in any given situation?
- Multicollinearity is essentially a sample phenomenon (arising out of non-experimental data collected in most social sciences).
- Therefore, we do not have one unique method of detecting it or measuring its strength.

1. High R^{2} (or significant F ratio) but few significant t-ratios.

- If R^{2} is high (usually, in excess of 0.8) and individual t test show that none or very few coefficients are significant, then there may be multicollinearity problem.
- Problem: Although this diagnostic is sensible, its disadvantage is that it is too strong.
- Note that multicollinearity is considered as "harmful" only when all of the influences of regressors on Y cannot be disentangled.

Detection of Multicollinearity [cont'd]

2. High pairwise correlation(s) among explanatory variables

- If the pairwise correlation coefficient between two regressors is high (in excess of 0.8 , in absolute value), then multicollinearity is a serious problem.
- Problem: Multicollinearity can exist even though the pairwise correlations are comparatively low (less than 0.5 , in absolute value).
- High pairwise correlations are a sufficient condition but not a necessary condition for the existence of multicollinearity.

3. Auxiliary regressions

- One way of finding out which X variable is related to other X variables is to regress each $X_{k i}$ on the remaining X variables.
- Each one of these regression is called an auxiliary regression (auxiliary to the main regression of Y on X 's).

Remedies

1. Do nothing

- Multicollinearity is essentially a data problem, and sometimes we have no choice over data available.
- Also, it is not that all coefficients in a regression model are insignificant.
- Moreover, significant F ratio means the model is overall significant.
- Depending on the objective of analysis, multicollinearity is not that problematic.

Remedies [cont'd]

2. A Priori information (about parameters)

- Example 1: Suppose we know that $\beta_{3}=0.1 \beta_{2}$ (given a priori information).

$$
\begin{aligned}
Y_{i} & =\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+e_{i} \\
& =\beta_{1}+\beta_{2}\left(X_{2 i}+0.1 X_{3 i}\right)+e_{i}
\end{aligned}
$$

- Once we obtain $\hat{\beta}_{2}$, we can estimate $\hat{\beta}_{3}$ from the relationship between β_{2} and β_{3}.
- Example 2: Cobb-Douglas production function

$$
\begin{aligned}
Y_{i} & =\beta_{1} L_{i}^{\beta_{2}} K_{i}^{\beta_{3}} e^{e_{i}} \\
\Longrightarrow \quad \ln Y_{i} & =\ln \beta_{1}+\beta_{2} \ln L_{i}+\beta_{3} \ln K_{i}+e_{i}
\end{aligned}
$$

- Suppose we know CRTS: $\beta_{2}+\beta_{3}=1$

$$
\begin{aligned}
\ln Y_{i} & =\ln \beta_{1}+\beta_{2} \ln L_{i}+\left(1-\beta_{2}\right) \ln K_{i}+e_{i} \\
\Longrightarrow \quad \ln \left(Y_{i} / K_{i}\right) & =\ln \beta_{1}+\beta_{2} \ln \left(L_{i} / K_{i}\right)+e_{i}
\end{aligned}
$$

Remedies [con'c]

3. Dropping a variable(s)

- The simplest remedy: dropping one of the collinear variables
- But, we may be committing a specification error of omitting relevant variables (\rightarrow biased and inconsistent estimator)

4. Transformation of variables: First difference

- One reason for high multicollinearity: Variables tent to move in the same direction over time (eg. income and wealth)
- Although the variables may be highly correlated, there is no a priori reason to believe their first differences will also be highly correlated.
- But, it might introduce autocorrelation of errors.
- Example:

$$
\underbrace{Y_{t}-Y_{t-1}}_{\Delta Y_{t}}=\beta_{2} \underbrace{\left(X_{2 t}-X_{2 t-1}\right)}_{\Delta X_{2 t}}+\beta_{3} \underbrace{\left(X_{3 t}-X_{3 t-1}\right)}_{\Delta X_{3 t}}+\underbrace{\left(e_{t}-e_{t-1}\right)}_{v_{t}}
$$

Remedies [cont'd]

5. Transformation of variables: Ratio transformation

- Example : Y is consumption, X_{2} is GDP, X_{3} is population
- GDP and population grow over time. \rightarrow They are likely to be correlated.
- One solution is to express the model on a per capita basis:

$$
\frac{Y_{t}}{X_{3 t}}=\beta_{1}\left(\frac{1}{X_{3 t}}\right)+\beta_{2}\left(\frac{X_{2 t}}{X_{3 t}}\right)+\beta_{3}+\left(\frac{e_{t}}{X_{3 t}}\right)
$$

- But, it might introduce heteroskedastic errors.

6. Additional or new data

- Again, multicollinearity is a sample feature.
- Simply increasing the size of the sample may attenuate the collinearity problem.

$$
n \Uparrow \rightarrow \operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{\sum x_{2 i}^{2}\left(1-r_{23}^{2}\right)} \Downarrow
$$

